По долгу службы приходится заниматься ремонтом промышленной аппаратуры. Анализ неисправностей показывает, что значительная их доля приходится на вышедшие из строя электролитические конденсаторы. Использование ЭПС-метра очень упрощает поиск таких конденсаторов. Первый мой здорово помог в этом деле, вот только со временем захотелось иметь прибор с более информативной шкалой, заодно «обкатать» другие схемные решения.
Вы спросите, почему опять аналоговый? Конечно, у меня имеется измеритель ЭПС с цифровым индикатором для подробного исследования конденсаторов большой емкости, но этого не требуется при оперативном поиске неисправностей. Кроме того, сказывается давняя симпатия к стрелочным указателям, унаследованная ещё с советского прошлого, поэтому захотелось чего-то эдакого, винтажного.
В результате макетирований остановился на ludens
, которая позволяет в широких пределах экспериментировать с измерительными шкалами.
Рабочая частота генератора 60 кГц. Прибор для удобства задуман двухдиапазонным – с узкой и растянутой шкалой. Микросхему допустимо заменить на TL072.
Конструкция
В качестве «подопытного» был выбран мультиметр YX-360TR , благо везде есть под рукой, и измерительная головка подходящая.Удаляем все ненужные внутренности, убираем шильдик, срезаем скальпелем выступающие части на передней панели. Посадочное место диапазонного переключателя выпиливается лобзиком, образовавшийся проём закрывается оргстеклом (полистиролом) подходящей толщины.
Вновь изготавливаемая плата должна точно повторять по контурам заводскую плату для того, чтобы обеспечивалось крепление на имеющиеся подхваты.
Переходим к изготовлению печатной платы:
О деталях
Резисторы R10, R12 и R11, R13 от которых зависят начало, и конец измерительного диапазона подбираются в процессе градуировки. Значения этих резисторов могут отличаться от стандартных значений ряда Е24 , поэтому наверняка будут наборными как у меня.Допускаю, что и вовсе ничего подбирать не придется, если будет использован рекомендуемый мультиметр и мои шкалы. Это возможно при стандартизации в производстве измерительных головок, но полностью полагаться в этом вопросе на китайских товарищей я бы не стал.
Еще одна трудоемкая часть схемы – трансформатор
. Я использовал магнитопровод от согласующего трансформатора из блока питания АТХ. Учитывая то, что это стандартный Ш-образный сердечник, намотка не должна вызывать особых затруднений.
Первичная обмотка содержит 400 витков провода диаметром 0,13 мм, вторичная 20 витков провода диаметром 0,2..0,4 мм. Вторичная обмотка у меня располагается между двумя слоями первичной, насколько это принципиально здесь - не знаю, просто по старой привычке.
Градуировка шкал
Как я уже говорил, внешний вид шкал и измерительные диапазоны могут меняться в широких пределах. Здесь основные определяющие элементы – чувствительность измерительной головки, сопротивления резисторов R10, R12 и R11, R13. Еще больше комбинаций может появиться, если вдобавок к этому поэкспериментировать с сопротивлениями резисторов измерительной схемы (R5, R6) и коэффициентом трансформации Tr1 (в разумных пределах конечно).Перед градуировкой вместо резисторов R10, R12 (R11, R13) ставят переменные резисторы с номиналами близкими к ожидаемым значениям, а движок резистора R14 устанавливают в среднее положение. Затем к измерительным щупам присоединяют резистор с сопротивлением соответствующим концу измерительного диапазона и резистором R10 (R11) устанавливают стрелку ближе к левой части шкалы, там, где будет последняя точка измерительного диапазона. По понятным причинам она не может быть на месте механического нуля микроамперметра.
Далее соединяют щупы накоротко и резистором R12 (R13) выставляют стрелку на крайнюю правую отметку шкалы. Эти операции повторяют несколько раз, пока стрелка не станет точно вставать на точки начала и конца диапазона без нашей помощи. Теперь, когда мы «нащупали» границы измерительного диапазона, измеряем сопротивления соответствующих переменных резисторов и впаиваем на их место постоянные.
Промежуточные точки шкалы находим, подсоединяя к щупам резисторы соответствующих сопротивлений. Чтобы упростить процесс допустимо для этих целей применять магазин сопротивлений с бифилярной намоткой катушек. В последствие проверял собранный прибор с магазином Р33 – отклонения показаний оказались незначительными. Чтобы запомнить местоположение промежуточных точек не обязательно наносить карандашом отметки не шкале, достаточно записывать числовые значения, полученные по заводской шкале на листочек бумаги, затем ставить риски на соответствующее место шаблона в программе.
Во вложении мои варианты шкал, выполненные в Спринте. В файле уже присутствует шаблон заводской шкалы, который можно включить, поставив галку в окне «отобразить».
Полученную таким образом шкалу приклеивают на заводскую при помощи клеящего канцелярского карандаша.
Внешний вид
Передняя панель нарисована в программе Visio, после распечатки лист ламинируется. Аккуратно вырезанная панель вставляется без зазоров на посадочное место и закрепляется подходящим клеем (у меня «Момент» водостойкий).
Соединительные провода берут мягкие на изгиб, сечением 0,5..1,0 кв.мм., не желательно делать их слишком длинными. Заводские щупы необходимо слегка заправить на наждаке для уменьшения контактного сопротивления и протыкания лаковых покрытий на плате.
Проблема быстрого контроля исправности оксидных конденсаторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируемой аппаратуры. Предлагается еще один вариант простого прибора, аналогичного уже описанному в «Радио», но с использованием стрелочного индикатора.
Многих радиолюбителей, да и профессиональных мастеров по ремонту радио- и телеаппаратуры, наверняка заинтересовала статья Р. Хафизова «Пробник оксидных конденсаторов» в журнале «Радио» (2003, № 10, с. 21). Общеизвестный метод проверки с помощью омметра, позволяя приблизительно оценить емкость и измерить утечку оксидных конденсаторов, далеко не всегда дает полную информацию об их качестве. Оперативная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства. Особенно это касается наиболее часто используемых конденсаторов емкостью от единиц до нескольких десятков микрофарад.
После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 применил, как мне кажется, более распространенную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использовал стрелочный индикатор уровня М68501 от магнитофона.
Применение стрелочного индикатора позволило сделать прибор более точным, достаточно компактным и более экономичным. Ток потребления не зависит от режима работы и составляет около 1 мА, что дает возможность использовать малогабаритный источник питания - батарею из трех миниатюрных дисковых элементов для лазерной указки.
Несколько измененная схема приведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конденсатора в пределах от 2 до 50 Ом и емкость от 5 до 50 мкФ.
Конструктивно прибор может быть выполнен в виде мини-тестера с выносными щупами и выключателем питания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением питания, что существенно увеличит срок службы батареи.
В данном варианте размеры корпуса составляют 90 x 45 x 20 мм. Индикатор расположен с левой стороны поперек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней стороны. Монтаж элементов прибора выполнен на печатной плате, чертеж которой приведен на рис. 2
Детали и замена
Для выбора вида измерений использован переключатель SA1 с фиксацией из серии ПКН. Выключатель питания SA2 - миниатюрный движковый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.
Вместо указанной на схеме микросхемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.
Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815. Конденсаторы - малогабаритные керамические, резисторы - мощностью 0,125 — 0,25 Вт. Оксидный конденсатор - К50-16 или импортный. Диоды VD2-VD5 - любые германиевые высокочастотные. Тип стрелочного индикатора существенного значения не имеет.
Настройка прибора
Налаживание прибора заключается в установке частоты генератора в пределах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соответственно С2 и С1, а также в установке стрелки индикатора на конец шкалы в режиме холостого хода подбором резисторов R4, R5, R8. Предварительно резистором R6 выставляют постоянное напряжение на коллекторе транзистора, примерно равное половине напряжения питания.
Градуировка шкалы не составит большого труда, так как пластмассовые индикаторы уровня легко вскрываются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем наносят соответствующие риски и надписи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.
Нелинейность шкалы таких индикаторов играет положительную роль, позволяя несколько расширить диапазон измерений. Градуировка шкалы электрической емкости производилась путем усреднения замеров нескольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные непроволочные резисторы.
После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них пришлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка. Этот монитор побывал уже у двух мастеров и был возвращен назад ввиду «отсутствия электрической схемы и сложности ремонта». В течение нескольких минут оказалось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди которых был обнаружен один с завышенным значением ЭПС и заниженной емкостью. После его замены монитор заработал!
Редактор - А. Соколов, графика - Ю. Андреев
Вариант изготовленной печатной платы прибора
Вид со стороны дорожек
Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)
Вариант внешнего вида прибора
От редакции журнала «Радио». Эквивалентное последовательное сопротивление (ЭПС, а в англоязычной терминологии - ESR) конденсатора зависит от многих факторов: его типа, емкости, номинального напряжения, частоты, на которой проводят измерения, и т. д. Например, ЭПС танталовых конденсаторов для поверхностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, находится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением ем кости и номинального напряжения. У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряжение от 6,3 до 160 В ЭПС, также измеренное на частоте 100 кГц, увеличивается от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В). Поэтому универсального критерия оценки пригодности конденсатора в зависимости от значения ЭПС не существует решение по отбраковке следует принимать в каждом конкретном случае.
Радио №10, 2005г.
П О П У Л Я Р Н О Е:
Недавно в России ввели поправки в ПДД, одной из которых является: езда днём с включенным ближним светом фар, противотуманными фарами или дневными ходовыми огнями . Т еперь нужно днём обязательно ездить со светом. Езда с включенным ближним светом или противотуманками дополнительно создаёт нагрузку на генератор, уменьшается срок службы ламп, а также увеличивается расход топлива (более 0,5 л на 100 км). Следовательно лучше ездить днём с включенными ходовыми огнями, светоизлучающим элементом которых являются светодиоды , которые потребляют гораздо меньше мощности чем лампы накаливания. Можно купить ДХО, а можно и сделать своими руками из подручных материалов.
Представляю вашему вниманию, как просто сделать измеритель ЭПС конденсаторов, который собирается всего за пару часов буквально "На коленке". Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди. В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все.
О деталях измерителя ЭПС. Трансформатор с соотношением витков 11\1. Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированного), вторичку желательно распределить равномерно, с небольшим натягом. Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40 В, но лучше Шоттки. Диод D2 - супресор на 26 - 36 В. Транзистор - типа КТ3107, КТ361 и аналогичные.
Измерения ЭПС проводить на измерительном пределе 20 В. При подключении разъёма измерительной выносной "головки" прибор "автоматически" переходит в режим измерения ЭПС, об этом свидетельствует показание примерно 36 В прибора на пределе 200 В и 1000 В (зависит от применённого супрессора), а на пределе 20 В - показание "выход за предел измерения".
При отключении разъёма измерительной выносной "головки" прибор автоматически переходит штатный режим мультиметра.
Итого: включаем адаптер - автоматом включается измеритель, выключили - штатный мультиметр. Теперь калибровка, ничего заумного, обычный резистор (не проволочный) подгоняем шкалу. Вот примерно как это выглядело:
Рассказать в:Не ослабевает интерес наших читателей и авторов к разработке и изготовлению устройств измерения ЭПС (ESR) оксидных конденсаторов. Предлагаемая ниже приставка к мультиметрам серии 83х продолжает эту тему. Мультиметры, далее приборы, серии 83х - очень популярны среди радиолюбителей из-за доступной цены и приемлемой точности измерений.
На страницах журнала "Радио" неоднократно публиковались статьи по расширению возможностей этих приборов, например, . При разработке предлагаемой приставки, так же как и в , была поставлена задача не применять дополнительный источник питания. Схема приставки показана на рис. 1
.
Рис.1
В приборах, построенных на микросхемах АЦП ICL71x6 или их аналогах, есть внутренний стабилизированный источник напряжения 3 В с максимальным током нагрузки 3 мА . С выхода этого источника подано напряжение питания на приставку через разъём "СОМ" (общий провод) и внешнее гнездо "NPNc", которое входит в состав восьмиконтактной розетки для подключения маломощных транзисторов в режиме измерения статического коэффициента передачи тока. Метод измерения ЭПС аналогичен применённому в цифровом измерителе, который описан в статье . По сравнению с этим устройством предлагаемая приставка существенно отличается простотой схемы, малым числом элементов и их низкой ценой.
Основные технические характеристики
Интервал измерения ЭПС, Ом:
при разомкнутых контактах выключателя SA1 0,1... 199,9
при его замкнутых контактах (положение "х0,1") 0,01...19,99
Ёмкость проверяемых конденсаторов, не менее, мкФ 20
Ток потребления, мА 1,5
При работе с приставкой переключатель рода работ прибора устанавливают в положение измерения напряжения постоянного тока с пределом "200 мВ". Внешние вилки приставки "СОМ", "VΩmA", "NPNc" стыкуются с соответствующими гнёздами прибора. Временная диаграмма показана на рис. 2
. Генератор, собранный на логическом элементе DD1.1 - триггере Шмитта, диоде VD1, конденсаторе С1 и резисторах R1, R2, вырабатывает последовательность положительных импульсов длительностью t r = 4 мкс с паузой 150 мкс и стабильной амплитудой около 3 В (рис. 2, а
). Эти импульсы можно наблюдать осциллографом относительно общего провода гнезда "СОМ". Во время каждого импульса через проверяемый конденсатор, подключённый к гнёздам "Сх" приставки, протекает заданный резисторами R4, R5 стабильный ток, который равен 1 мА при разомкнутых контактах выключателя SA1 или 10 мА при его замкнутых контактах (положение "х0,1").
Рассмотрим работу узлов и элементов приставки с подключённым проверяемым конденсатором с момента появления очередного импульса длительностью t r на выходе элемента DD1.1. От инвертированного элементом DD1.2 импульса низкого уровня длительностью t r транзистор VT1 закрывается на 4 мкс. После зарядки ёмкости сток-исток закрытого транзистора VT1 напряжение на выводах проверяемого конденсатора будет зависеть практически только от тока протекающего через его ЭПС. На логическом элементе DD1.3, резисторе R3 и конденсаторе С2 собран узел задержки фронта импульса генератора на 2 мкс. За время задержки t 3 ёмкость сток-исток закрытого транзистора VT1, шунтирующая испытуемый конденсатор, успевает зарядиться и практически не влияет на точность следующего после t 3 процесса измерения (рис. 2,б
). Из задержанного на 2 мкс и укороченного по длительности до 2 мкс импульса генератора на выходе инвертора DD1.4 формируется измepиteльный импульс длительностью t изм = 2 мкс (рис. 2,в) высокого уровня. От него открывается транзистор VT2, а запоминающий конденсатор СЗ начинает заряжаться от падения напряжения на ЭПС проверяемого конденсатора через резисторы R6, R7 и открытый транзистор VT2. По окончании измерительного импульса и импульса с выхода генератора от высокого уровня на выходе элемента DD1.2 транзистор VT1 открывается, a VT2 от низкого уровня на выходе элемента DD1.4 закрывается. Описанный процесс повторяется каждые 150 мкс, что приводит к зарядке конденсатора СЗ до падения напряжения на ЭПС проверяемого конденсатора после нескольких десятков периодов. На индикаторе прибора отображается значение эквивалентного последовательного сопротивления в омах. При положении выключателя SA1 "х0,1" показания индикатора нужно умножить на 0,1. Открытый между импульсами генератора транзистор VT1 устраняет рост напряжения (заряд) на ёмкостной составляющей проверяемого конденсатора до значений ниже минимальной чувствительности прибора, равной 0,1 мВ. Наличие входной ёмкости транзистора VT2 приводит к смещению нуля прибора. Для устранения её влияния применены резисторы R6 и R7. Подбором этих резисторов добиваются отсутствия напряжения на конденсаторе СЗ при замкнутых гнёздах "Сх" (установка нуля).
О погрешностях измерений. Во-первых, имеет место систематическая погрешность, достигающая примерно 6 % для сопротивлений, близких к максимуму в каждом интервале. Она связана с уменьшением тока тестирования, но не так важна - конденсаторы с такими ЭПС подлежат браковке. Во-вторых, существует погрешность измерения, зависящая от ёмкости конденсатора.
Объясняется это ростом напряжения во время импульса с генератора на ёмкостной составляющей конденсаторов: чем меньше ёмкость, тем быстрее её зарядка. Эту погрешность нетрудно рассчитать, зная ёмкость, ток и время зарядки: U = М/С. Так, для конденсаторов ёмкостью более 20 мкФ она не влияет на результат измерений, а вот для 2 мкФ измеренное значение будет больше реального примерно на 1,5 Ома (соответственно, 1 мкФ - 3 Ома, 10 мкФ - 0,3 Ома и т. п.).
Чертё ж печатной платы показан на рис. 3 . Три отверстия под штыри следует просверлить так, чтобы последние входили в них с небольшим усилием.
Это облегчит процесс их пайки к контактным площадкам. Штырь "NPNc" - позолоченный от подходящего разьёма, подойдёт и кусок лужёного медного провода. Отверстие под него сверлят в подходящем месте после установки штырей "СОМ" и "VΩmA". Последние - от вышедших из строя измерительных щупов. Конденсатор СЗ желательно применить из группы ТКЕ не хуже Н10 (X7R). Транзистор IRLML6346 (VT1) можно заменить на IRLML6246, IRLML2502, IRLML6344 (в порядке ухудшения). Критерии замены - сопротивление открытого канала не более 0,06 Ом при напряжении затвор-исток 2,5 В, ёмкость сток-исток - не более 300...400 пФ. Но если ограничиться только интервалом 0,01...19,00 Ом (выключатель SA1 в этом случае заменяют перемычкой, резистор R5 удаляют), то максимальная ёмкость сток-исток может достигать 3000 пФ. Транзистор 2N7000 (VT2) заменим на 2N7002, 2N7002L, BS170C пороговым напряжением не более 2...2,2 В. Перед монтажом транзисторов следует проверить соответствие расположения выводов проводникам печатной платы. Гнёзда XS1, XS2 в экземпляре автора - клеммник винтовой 306-021-12.
Перед налаживанием приставку следует подключить не к мультиметру, чтобы не вывести его из строя, а к автономному источнику питания напряжением 3 В, например, к двум последовательно соединённым гальваническим элементам. Плюс этого источника временно подключают к штырю "NPNc" приставки (не подключая этот штырь к мультиметру), а минус - к её общему проводу. Измеряют потребляемый ток, который не должен превышать 3 мА, после чего автономный источник отключают. Гнёзда "Сх" временно замыкают коротким отрезком медного провода диаметром не менее 1 мм. Штыри приставки вставляют в одноимённые гнёзда прибора. Подбором резисторов R6 и R7 устанавливают нулевые показания прибора при обоих положениях выключателя SA1. Для удобства эти резисторы можно заменить одним подстроечным, а после настройки нуля впаивают резисторы R6 и R7 с суммарным сопротивлением, равным подстроечному.
Удаляют отрезок провода, замыкающий гнёзда "Сх". К ним подключают резистор 1...2 0м при замкнутом положении SA1, затем - 10...20 Ом при разомкнутом. Сверяют показания прибора с сопротивлениями резисторов. В случае необходимости подбирают R4 и R5, добиваясь желаемой точности измерения. Внешний вид приставки показан на фото рис. 4
.
Приставку можно использовать как омметр малых сопротивлений Также ею можно измерять внутреннее сопротивление малогабаритных гальванических или аккумуляторных элементов и батарей через последовательно соединённый конденсатор ёмкостью не менее 1000 мкФ, соблюдая полярность его подключения. Из полученного результата измерения необходимо вычесть ЭПС конденсатора, который должен быть измерен заранее.
ЛИТЕРАТУРА
1. Нечаев И. Приставка к мультиметру для измерения емкости конденсаторов. - Радио, 1999, №8,с.42,43.
2. Чуднов В. Приставка к мультиметру для измерения температуры. - Радио, 2003, № 1, с. 34.
3. Подушкин И. Генератор + одновибратор = три приставки к мультиметру. - Радио, 2010, № 7, с. 46, 47; № 8, с. 50-52.
4. Даташит ICL7136 http://radio-hobby.org/modules/datasheets/2232-icl7136
5. Бирюков С. Цифровой измеритель ESR. - Схемотехника, 2006, № 3, с. 30-32; №4, с. 36,37.
АРХИВ: Скачать с сервера
Раздел:
[Измерительная техника]
Сохрани статью в: