Схема подключения трехполосного пассивного фильтра. Кроссовер, порядки фильтров - на пальцах

Схема подключения трехполосного пассивного фильтра. Кроссовер, порядки фильтров - на пальцах

Конденсаторы - это неизбежное «зло», которое вынуждены, стиснув зубы, терпеть аудиофилы. Многие типы конденсаторов «плохо звучат».

Например, пресловутая керамика Н90 - из-за пьезоэлектрического эффекта. А как другие типы, скажем, пленочные? Тут можно написать целую поэму. Но можно ли строить частотнозависимые цепи без них, только с помощью дросселей (индуктивностей)? Оказывается, можно. И не только можно, но и нужно!

Мои старые акустические колонки постройки до 1980 г. изредка подвергались доработкам. Из-за порванного диффузора головка 4ГД8-Е была заменена на 5ГДШ5-4 (это почти одно и то же), а заодно и вторая. Головки 25ГД-26 были включены «дублетом» («лицом к лицу») (1). И рамку с защитной радиотканью пришлось окончательно снять. А вот фильтры оставались прежние.

На низких частотах - второго порядка, на средних и высоких - третьего. И АЧХ по звуковому давлению была неплохой. Но звучание…! Не чувствовалось разницы между разными усилителями, а не то что между проводами из меди и серебра.

Настало время заменить фильтры. А какие выбрать? За эти годы появилась масса противоречивой информации. Аудиофилы особенно ругали конденсаторы. Сначала советовали делать фильтры не выше первого порядка, потом отказывались делать такие фильтры и строили четвертого, а кое-кто дошел и до шестого порядка.

Анализировали групповое время задержки (ГВЗ) и ФЧХ, двигали ВЧ-излучатель вперед, назад… и даже в сторону. Полнейший «разброд»: от однополосных АС на 4А28 до 4-5-6-полосных… и т.п. Как-то, разгребая распечатки материалов из Интернета, наткнулся на статью А. Юренина о последовательных кроссоверах.

Там автор говорит, что они появились в 1969 г. Но сами схемы я встречал еще в 1961 г. (2). где автор ссыпается на немецкий журнал по технике связи за 1959 г. Суть дела не в этом, а в том. что Юренин привел схему , в которой нет конденсаторов (схема запатентована и используется в производимых фирмой Acoustic Reality акустических системах).

Вот эта схема (рис.1). Она очень проста. Так как мои АС тоже трехполосные, я решил начать переделку фильтров именно с этой схемы. Проведем небольшой анализ. Нарисуем простейший последовательный кроссовер, «первого порядка» так, как его принято изображать (рис.2). Здесь присутствует конденсатор С1. а на рис.1 такого конденсатора нет Но зато там добавлено звено L1-R1. представляющее собой для СЧ- и НЧ-излучателей фильтр нижних частот.


На L1 выделяются верхние частоты и попадают в ВЧ-излучатель BA1. L2-Rваз - это еще один фильтр нижних частот, которые выделяются в ВАЗ, а выделяющиеся на L2 средние частоты попадают в СЧ-излучатель ВА2. Вот и вся премудрость! Главное, чтобы сопротивление излучателей было чисто активным.

Но излучатели (головки) электродинамического типа не могут иметь чисто активного сопротивления, поскольку у них имеется катушка с железным сердечником. Повторение схемы по рис.1 приводит к печальному результату: средних частот явно мало из-за индуктивности головки ВАЗ. Займемся НЧ-излучателем.

Для проведения этой работы понадобятся генератор звуковых частот с Uвых.max = 10В, электронный вольтметр (например, B3-38) или мультиметр. Известно, что для выравнивания входного сопротивления динамика в попосе частот требуется применение цепи Цобеля и последовательного контура на частоте резонанса .

Но на НЧ резонансный контур почти никогда не ставится из-за своей громоздкости и отдаленности резонанса динамика от частот раздела НЧ-СЧ/ВЧ (0.3.. .3 кГц). Для выбора R1 иС1 (рис.3) нужно знать сопротивление динамика ВА по постоянному току Re: и индуктивность его катушки Lк.

Re моих двух последовательно включенных динамиков составляет 7.2 Ом. Таким образом, R1=9 Ом, а С1 =?. т.к. Lк неизвестна. Чтобы определить Lк, нужно измерить сопротивление динамика на разных частотах.

Схема измерения проста и показана на рис.4. Результаты сведены в табл.1. Поделив показания вольтметра PV1 в милливольтах на 10 (вторая строка таблицы), получаем сопротивление Zва в омах (третья строка).

Из табл.1 находим Fz- частоту, на которой индуктивное и активное сопротивления динамика примерно равны, т.е. частоту, где

Некоторые авторы предлагают брать R1=Rе. Я взял R1=8 Ом, тогда С1 =30 мкФ. Можно использовать бумажный конденсатор типа МБГО 30,0×160 В. В нижней строке табл.1 приведены результаты измерения сопротивления НЧ-динамика с RC- цепью Цобеля (8.2 Ом, 30 мкФ). Неплохая, однако, получилась компенсация! Теперь НЧ излучатель можно включить в схему по рис.1. Провала на средних частотах не будет.

СЧ-излучатель 5ГДШ5-4 имеет Rе=3.5 Ом и отдачу почти в 3 раза большую, чем НЧ-головка, и здесь требуется выравнивание отдачи. Проделав измерения по определению Lк для этой головки, найдем частоту Fz. с которой начинает расти Z.

Это примерно 4…5 кГц. Для выравнивания отдачи целесообразно включить последовательный резистор, как показано на рис.5. не используя цепь Цобеля. Образуется делитель с коэффициентом передачи на НЧ Кп:

Частота Fz такой цепи увеличится в 4 раза и составит 16…20 кГц, так что цепь Цобеля и не понадобится. А входное сопротивление доведем до приемлемой величины, включив параллельный резистор R1 сопротивлением 15 Ом, как показано на рис.6.

При этом эквивалентное сопротивление Z составит:

Это позволяет включить СЧ-иэлучатель в схему на рис.1. Включение последовательного резистора с сопротивлением, почти в 4 раза большим, чем Rе, уменьшает нелинейные искажения СЧ-головки, приближая эквивалентное сопротивление генератора к источнику тока.

Варьируя R1 и R2 (рис.6), можно точно подобрать коэффициент деления, нужный для одинаковой отдачи СЧ- и НЧ-головок. Очень важно отметить, что на средних частотах действительно нет конденсаторов (кроме С1 в НЧ-звене, рис.З), а частоту раздела НЧ-СЧ можно сдвигать, изменяя только одну индуктивность -L2 на рис. 1.

ВЧ-излучатель - 6ГД11. Его Re=5,6 ОМ. Zва =7,3 ОМ на частоте 5 кГц и далее растет до 12,5 Ом на частоте 20 кГц. Чаще всего цель Цобеля не ставят, т.к.частота раздела - 4…8 кГц, а рост Zва с увеличением частоты незначительно сказывается на звучании.

Выбор частот раздела НЧ-СЧ и СЧ-ВЧ производится из следующих соображений. Так как использованы фильтры первого порядка, частоты разделов должны отстоять от резонанса соответствующего излучателя не менее, чем на 2 октавы , т.е. fнч-сч>600 Гц (fpeз~150 Гц у 5ГДШ5-4), а fсч-вч > 6 кГц (fрез = 1,5 кГц у 6ГД11).

Для лучшей защиты ВЧ-излучателя от НЧ-колебаний пришлось поставить последовательно с излучателем 6ГД11 дополнительный конденсатор емкостью 2.2 мкФ (К73-16, Umax=160 В). Без него на повышенной громкости появлялись какие-то призвуки.

В СЧ-излучателе я применил открытое оформление (бокс без задней стенки размерами 220x140x75 мм). Теперь его можно легко разворачивать под нужным углом к слушателю. Заклеил окна диффузородержателя (корзины) хлопчатобумажным ватином и довел таким образом полную добротность до 0,65. Окончательная схема громкоговорителя приведена на рис.7а.


Конструктивно катушка L2 выполнена бескаркасной и имеет сопротивление постоянному току RL2=0.4 ОМ. При желании индуктивность катушки можно легко изменять (увеличивать), вдвигая в нее ферритовый сердечник (кусок магнитной антенны от радиоприемника «Океан») диаметр 10 мм., длина 100 мм. При этом частота fнч-сч меняется в 2.4 раза. Катушка L1 на мотана на не замкнутом сердечнике ШЛ40х10 (одна скоба), RL1=0,4 Ом.

Входное сопротивление Z громкоговорителя с таким фильтром на разных частотах представлено в табл.2. Из таблицы видно, что Z3 значительно меняется: на частоте 2,5 кГц - 5.6 Ом, а на 20 кГц - 11 Ом. Для выравнивания Z на этих частотах ко входу фильтра нужно подключить RC-целочку (рис.76).

Тогда Z3 изменяется на этих частотах так, как показано в последней строке табл.2. Общее изменение Z во всей полосе от 80 Гц до 20 кГц не выходит за пределы 4,4…6 Ом и только на частоте 3150 Гц составляет 6,3 Ом. Такая ровная Z-характеристика дает возможность сравнивать усилители с разным выходным сопротивлением (ламповые и транзисторные).

Прослушав АС, я с удовлетворением отметил прекрасное звучание своего лампового «однотактника», заметно лучшее, чем звучание транзисторного УМЗЧ, тоже, впрочем, неплохое. АЧХ с помощью измерительного микрофона я. конечно, проверил, насколько это возможно в жилой комнате.

А вот ФЧХ и ГВЗ измерять не стал. Просто послушал «звук» и решил, что еще лет на 10 мне этих фильтров хватит. А может, фирменные АС резко подешевеют, тогда и куплю себе что-либо, лучше звучащее, без конденсаторов.

С целью снижения интермодуляционных искажений при звуковоспроизведении громкоговорители Hi-Fi систем составляют из низкочастотных, среднечастотных и высокочастотных динамических головок. Их подключают к выходам усилителей через разделительные фильтры, представляющие собой комбинации LC фильтров нижних и верхних частот.

Ниже приведена методика расчета трехполосного разделительного фильтра по наиболее распространенной схеме.

Частотная характеристика разделительного фильтра трехполосного громкоговорителя в общем виде показана на рис. 1. Здесь: N - относительный уровень напряжения на звуковых катушках головок: fн и fв - нижняя и верхняя граничные частоты воспроизводимой громкоговорителем полосы; fр1 и fр2 - частоты раздела.

В идеальном случае выходная мощность на частотах раздела должна распределяться поровну между двумя головками. Это условие выполняется, если на частоте раздела относительный уровень напряжения, поступающего на соответствующую головку, снижается на 3 дБ по сравнению с уровнем в средней части ее рабочей полосы частот.

Частоты раздела следует выбирать вне области наибольшей чувствительности уха (1... 3 кГц). При невыполнении этого условия, из-за разности фаз колебаний, излучаемых двумя головками на частоте раздела одновременно, может быть заметно "раздвоение" звука. Первая частота раздела обычно лежит в интервале частот 400... 800 Гц, а вторая - 4... 6 кГц. При этом низкочастотная головка будет воспроизводить частоты в диапазоне fн...fp1. среднечастотная - в диапазоне fp1... fр2 и высокочастотная - в диапазоне fр2...fв.

Один из распространенных вариантов электрической принципиальной схемы трехполосного громкоговорителя приведен на рис. 2. Здесь: B1 - низкочастотная динамическая головка, подключенная к выходу усилителя через фильтр нижних частот L1C1; В2 - среднечастотная головка, соединенная с выходом усилителя через полосовой фильтр, образованный фильтрами верхних частот C2L3 и нижних частот L2C3. На высокочастотную головку В3 сигнал подается через фильтры верхних частот C2L3 и C4L4.

Расчет емкостей конденсаторов и индуктивностей катушек производят исходя из номинального сопротивления головок громкоговорителя. Поскольку номинальные сопротивления головок и номинальные емкости конденсаторов образуют ряды дискретных значений, а частоты раздела могут варьироваться в широких пределах, то расчет удобно производить в такой последовательности. Задавшись номинальным сопротивлением головок, подбирают емкости конденсаторов из ряда номинальных емкостей (или суммарную емкость нескольких конденсаторов из этого ряда) такими, чтобы получившаяся частота раздела попадала в указанные выше частотные интервалы.

Тип конденсатора Емкость, мкФ
МБМ 0,6
МБГО, МВГП 1; 2; 4; 10
МБГП 15; 26
МБГО 20; 30

{mospagebreak}Емкости конденсаторов фильтров С1...С4 для различных сопротивлений головок и соответствующие значения частот раздела приведены в табл 2.

Zг,0м 4.0 4.5 5.0 6.5 8.0 12,5 15
С1,C2, мкф 40 30 30 20 20 15
fp1, Гц 700 840 790 580 700 - 520
С3,С4, мкф 5 5 4 4 3 2 1,5
fр2,кГц 5,8 5,2 5 4,4 4,8 4,6 5,4

Легко видеть, что все значения емкостей могут быть либо непосредственно взяты из номинального ряда емкостей. либо получены параллельным соединением не более чем двух конденсаторов (см. табл. 1).

После того как емкости конденсаторов выбраны, определяют индуктивности катушек в миллигенри по формулам:

В обеих формулах: Zг-в омах; fp1, fр2 - в герцах.

Поскольку полное сопротивление головки является частотнозависимой величиной, для расчета обычно принимают указанное в паспорте головки номинальное сопротивление Zг, оно соответствует минимальному значению полного сопротивления головки в диапазоне частот выше частоты основного резонанса до верхней граничной частоты рабочей полосы. При этом надо иметь в виду, что фактическое номинальное сопротивление различных образцов головок одного и того же типа может отличаться от паспортного значения на ±20%.

В некоторых случаях радиолюбителям приходится использовать в качестве высокочастотных головок имеющиеся динамические головки с номинальным сопротивлением, отличающимся от номинальных сопротивлений низкочастотной и высокочастотной головок. При этом согласование сопротивлений осуществляют, подключая высокочастотную головку В3 и конденсатор С4 к различным выводам катушки L4 (рис. 2), т. е. эта катушка фильтра играет одновременно роль согласующего автотрансформатора. Катушки можно намотать на круглых деревянных, пластмассовых или картонных каркасах с щечками из гетинакса. Нижнюю щечку следует сделать квадратной; так ее удобно крепить к основанию - гетинаксовой плате, на которой крепят конденсаторы и катушки. Плату крепят шурупами ко дну ящика громкоговорителя. Во избежание дополнительных нелинейных искажений катушки должны выполняться без сердечников из магнитных материалов.

Пример расчета фильтра.

В качестве низкочастотной головки громкоговорителя используется динамическая головка 6ГД-2, номинальное сопротивление которой Zг=8 Ом. в качестве среднечастотной - 4ГД-4 с таким же значением Zг и в качестве высокочастотной - ЗГД-15, для которой Zг=6,5 Ом. Согласно табл. 2 при Zг=8 Ом и емкости С1=С2=20 мкф fp1=700 Гц, а при емкости С3=С4=3 мкф fр2=4,8 кГц. В фильтре можно применить конденсаторы МБГО со стандартными емкостями (С3 и С4 составляют из двух конденсаторов).

По приведенным выше формулам находим: L1=L3=2,56 мГ; L2=L4=0,375 мГ (для автотрансформатора L4 - это значение индуктивности между выводами 1-3).

Коэффициент трансформации автотрансформатора

На рис. 3 показана зависимость уровня напряжения на звуковых катушках головок от частоты для трехполосной системы, соответствующей примеру расчета. Амплитудно-частотные характеристики низкочастотной, среднечастотной и высокочастотной областей фильтра обозначены соответственно НЧ, СЧ и ВЧ. На частотах раздела затухание фильтра равно 3,5 дБ (при рекомендуемом затухании 3 дБ).

Отклонение объясняется отличием полных сопротивлений головок и емкостей конденсаторов от заданных (номинальных) значений и индуктивностей катушек от полученных расчетом. Крутизна спада кривых НЧ и СЧ составляет 9 дБ на октаву и кривой ВЧ - 11 дБ на октаву. Кривая ВЧ соответствует несогласованному включению громкоговорителя 1 ГД-3 (в точки 1-3). Как видно, в этом случае фильтр вносит дополнительные частотные искажения.

Примечание от авторов:

В приводимой методике расчета принято, что среднее звуковое давление при одной и той же подводимой электрической мощности для всех головок имеет примерно одинаковое значение. Вели же звуковое давление, создаваемое какой-либо головкой, заметно больше, то для выравнивания частотной характеристики громкоговорителя по звуковому давлению эту головку рекомендуется подключать к фильтру через делитель напряжения, входное сопротивление которого должно быть равно принятому при расчете номинальному сопротивлению головок.

РАДИО N 9, 1977 г., с.37-38 E. ФРОЛОВ, г. Москва

9. ДВУХ- И ТРЕХПОЛОСНЫЕ СИСТЕМЫ ГРОМКОГОВОРИТЕЛЕЙ

Двух- и трехполосные системы громкоговорителей (агрегаты) да­ют возможность воспроизводить более широкую полосу частот со значительно меньшими частотными и нелинейными искажениями, чем это могли бы сделать широкополосные громкоговорители. К этому надо добавить, что двух- и трехполосные системы обеспечивают улучшение акустических показателей звуковоспроизводящего звена более дешевым образом, ибо широкополосная головка всегда будет стоить много дороже узкополосных. Разделение полного диапазона частот на две и три частотных полосы показано на рис. 55. Видны нижняя (f н ) и верхняя (f в ) границы воспроизводимой полосы ча­стот и частоты раздела (f Р , f P 1 и f P 2 ).

Рис. 55. Условное разделение воспроизводимой полосы ча­стот при двухполосной и трех­полосной акустических систе­мах

( f н и f в - соответственно низшая и высшая граничные частоты; f p , f pl и f р2 - частоты разделения).

Приведенные характеристики представляют собой уровни напряжения на выходе соответствующих разделительных фильтров. Более дорогой является трехполосная си­стема, она способна обеспечить воспроизведение более широкой по­лосы частот (особенно вниз) и с лучшей равномерностью частотной характеристики. Дпухполосные системы получили более широкое распространение. Выбор числа полос следует производить на основе акустических данных имеющихся в наличии головок и требований к неравномерности частотной характеристики системы. Частоты раз­дела выбирают, исходя из условий получения лучшей частотной ха­рактеристики системы (агрегата), т.е. меньших частотных искаже­ний. Это определяется частотными характеристиками головок. Известно также, что частотные искажения громкоговорителя минимальны до критической частоты диффузора , после которой он перестает колебаться, как поршень. Некоторое влияние на выбор частоты раздела могут оказать запасы мощностей у имеющих­ся головок. Кривые требующегося соотношения мощностей головок, приведенные на рис. 32, показывают, что при повышении частоты раздела, высокочастотная головка разгружается и увеличивается нагрузка низкочастотной головки. В некоторых случаях не рекомен­дуют частоту раздела выбирать между 1-4 кгц, так как это может несколько ухудшить слуховые ощущения из-за возможной заметности двух источников звука, работающих одновременно на частоте раздела, которая в этом случае была бы в области наибольшей чув­ствительности нашего слуха. Снижение частоты раздела уменьшает, кроме того, и интермодуляционные искажения. Таким образом, наи­более подходящими частотами раздела могут быть частоты, лежащие в области 400-800 гц и 4-5 кгц. Простейшим способом создания двухполосного агрегата является подключение одной или двух высо­кочастотных головок через разделительный конденсатор к имеюще­муся громкоговорителю.

Большинство диффузорных громкоговорителей мощностью 6- 10 ватт хорошо работают в диапазоне низших и средних частот, т.е. воспроизводят довольно широкую полосу частот. Большинство наи­более мощных наших громкоговорителей (5ГД-3РР3, 6ГД-1, 8ГД-РР3, 10ГД-28 и др.) имеют частоту основного резонанса в лучшем случае 45-50 гц (очень редко 42-40 гц), а снижение отдачи на высших частотах начинается с 5-6 кгц. Таким образом, рабочая полоса, в которой эффективней могут работать эти громкоговорители, простирается от 40-45 гц до 5 кгц. Для воспроизведения области частот выше 5 кгц должны применяться дополнительные небольшие громкоговорители, рассчитанные на воспроизведение полосы до 16- 20 кгц (например, 1ГД-1РР3, 1ГД-2, 1ГД-3). Частота раздела при указанных выше мощных головках должна быть около 5 кгц.

Рис. 56. Схемы присоединения громкоговорителей, воспроизводящих верхнюю полосу частот (условно показано по одной головке в каждой полосе).

а - при приблизительно равном сопротивлении громкоговорителей; б - при

различном сопротивлении; в - то же, но с отдельными трансформаторами в каждой полосе.

На рис. 56 показаны возможные схемы присоединения дополни­тельных высокочастотных головок. Мощность этих головок при такой частоте раздела может быть менее 0,1 от мощности основного громкоговорителя. Присоединение дополнительных головок не нарушит согласования нагрузки с выходным каскадом и даже улучшив его, так как на высших частотах растет полное сопротивление основного громкоговорителя и нагрузка усилителя падает.

Схема на рис. 56. а предназначена для присоединения высокочастотной головки, полное сопротивление которой приблизительно равно полному сопротивлению основного громкоговорителя. Схемы (рис, 56, б, в ) позволяют применять громкоговорители со значительно отличающимися полными сопротивлениями. Согласование нагрузки достигается или с помощью отводов в выходном трансформатор или отдельным трансформатором (автотрансформатором). Технически легче сделать два хороших выходных трансформатора, работающих каждый в узкой полосе частот, чем один высококачественный широкополосный. Это особенно важно при более мощном усилителе.

В этих схемах условно показано по одной головке в каждой полосе, тогда как в действительности могут быть подключены две го­ловки и более. Конечно, все головки должны быть правильно сфазированы и должно быть учтено их общее сопротивление. Емкость разделительного конденсатора определяется частотой раздела и мо­дулем полного сопротивления высокочастотной головки. На частоте раздела емкостное сопротивление конденсатора должно равняться модулю полного сопротивления головки, т. е.

где f Р - частота раздела; | Z ГР | - модуль полного сопротивления го­ловки на частоте раздела.

Рис. 57. Основные схемы разделительных фильтров.

Рис. 58. График для расчета величины разделительной емкости C в схемах на рис. 56 и емкости С 1 , в схемах на рис. 57, а, б.

Разделительный конденсатор, емкость которого рассчитана по этой формуле, дает затухание перед частотой раздела в 6 дб на ок­таву (0,5 f Р ).

Простейшим фильтром, при помощи которого к низкочастотной головке подводится напряжение только низших частот, а к высоко­частотной головке - только высших частот, являются схемы, приве­денные на рис. 57, а,б. Они рассчитаны на головки с одинаковым полным сопротивлением и имеют одинаковое входное сопротивление, равное полному сопротивлению одной головки, несмотря на то, что в первой схеме головки соединены последовательно, а во второй - параллельно. Емкость конденсатора и индуктивность дросселя определяются из условия, что их емкостное или индуктивное сопротив­ление равно на частоте раздела полному сопротивлению головки, поэтому к каждой головке будет приложена половина выходной мощности усилителя; таким образом,

Отсюда легко получаются расчётные формулы

Формула для расчета емкости конденсатора получилась одина­ковой с формулой для расчета емкости разделительного конденсатора высокочастотной головки, что совершенно закономерно, так как они отвечают одинаковым условиям.

Для удобства расчета фильтра на рис. 58 приведены кривые, позволяющие определить значения емкости и индуктивности в зависимости от модуля полного сопротивления головки для двух частот раздела.

Описанный фильтр дает затухание вблизи частоты раздела 6 дб на октаву (0,5 f p и 2 f p ). Однако предпочтительнее фильтры, обладающие более крутым срезом частотной характеристики затухания вблизи частоты раздела, т. е. большим затуханием на октаву. Это желательно для сокращения области частот, в которой одновременно работают (излучают) и низкочастотные и высокочастотные головки. Такие фильтры имеют схемы, приведенные на рис. 57, в, г: они дают затухание около 12 дб на октаву и также рассчитаны на головки с одинаковыми полными сопротивлениями. Входное сопротивление фильтров равно полному сопротивлению одной головки; условие расчета этих фильтров то же, что и у предыдущих: на частоте раздела подводимая мощность делится поровну между головками. В этом случае в последовательной схеме (рис. 57, в ) емкость и индуктивность определяются формулами

а в параллельной схеме (рис. 57, г )

До сих пор говорилось о фильтрах, рассчитанных на головки с одинаковым полным сопротивлением (в своих полосах частот). Очень часто используют головки с разным входным сопротивлением.

Если сопротивления звуковых катушек громкоговорителей раз­личны, их следует уравнять с помощью согласующего трансформато­ра. Такой трансформатор (или автотрансформатор) лучше приме­нять для высокочастотной группы и в зависимости от соотношения сопротивления звуковых катушек использовать либо на повышение (если сопротивление НЧ группы меньше), либо на понижение. Его коэффициент трансформации вычисляют по формуле

где | Z H | и | Z В | - модули полных сопротивлений низкочастотной и высокочастотной головок.

Рис. 59. Схема присоединения громкоговорителей с разными сопротивлениями через фильтры нижних и верхних частот.

Рис. 60. Схема для расчета коэффициен­тов трансформации.

Когда такое уравнение полных сопротивлений головок почему-либо невозможно, то можно подключить громкоговорители к разным отводам выходного трансформатора так, как это показано на рис. 59 (для случая, когда | Z Н | меньше, чем | Z В |). При этом номиналы эле­ментов разделительных фильтров рассчитываются, как для обычных простых фильтров нижних и верхних частот;

Здесь может быть уместно привести формулу для расчета ко­эффициента трансформации каждой отдельной обмотки или отдельного трансформатора (рис. 60, а ), учитывающего как полные сопро­тивления разных головок, так и их номинальные мощности:

где и - число витковпервичной и вторичной обмоток; P У - мощность усилителя; Z H - сопротивление нагрузки усилителя; P ГР - мощность громкоговорителя; Z ГР - полное сопротивление громкоговорителя (среднее значение).

Правильность рассчитанных коэффициентов трансформации мож­но проверить подсчетом общего сопротивления нагрузки по фор­муле

(R должно быть равно | Z H |).

У фабричных выходных трансформаторов, имеющих отводы для включения разных сопротивлений нагрузки (громкоговорителя), обычно обозначают выводы, как показано на рис. 60, б . Но эти же отводы позволяют присоединить нагрузку иного сопротивления на отдельные части обмотки. Определить сопротивление этих нагрузок для верхней секции и подобным же образом для остальных можно по формуле

Перейдем к расчету трехполосных систем. Несмотря на то, что приведенные выше расчетные формулы относятся к двухполосным системам, ценная особенность фильтров, схемы которых изображе­ны на рис. 57, в, г , состоит в том, что их входное сопротивление рав­но полному сопротивлению головки и позволяет успешно использо­вать такие фильтры и в трехполосной схеме. Единственным условием является то, чтобы все три головки имели одинаковые сопротивления в своих полосах частот. Схема фильтров для трехполосной системы показана па рис. 61, а. Она содержит две пары фильтров параллель­ного включения, соответствующих схеме на рис. 57, г . Первую пару фильтров ( L 2 и С 2) рассчитывают по приведенным выше формулам для более низкой частоты раздела (f Р1 ) и к одному из них (низко­частотному) присоединяют низкочастотную головку. Вторую пару фильтров присоединяют к высокочастотному фильтру первой ступе­ни, пропускающему сигналы с частотами выше частоты раздела. Эту пару фильтров (L " 2 и С" 2 ) рассчитывают по тем же формулам, что и первую пару, но для более высокой частоты раздела (f Р2 ). Таким образом, вторая пара фильтров делит область частот, находящую­ся выше первой частоты раздела (f Р1 ), на две полосы с частотой раздела f Р2 между ними. Не представляет трудностей составить такую же систему из двух пар фильтров последовательного включения, которые рассчитывают аналогичным образом, но по формулам, от­носящимся к схеме на рис. 57, в ; такая схема представлена на рис. 61, б. Она может представить интерес только тем, что в ней нужны другие значения емкостей конденсаторов и индуктивностей дросселей, которые можно легче купить или сделать, чем те, которые требуются для параллельных схем.


Рис. 61. Схема включения фильтров в трехполосной системе громкоговорителей.


Рис. 62. Упрощенные схемы фильтров для трехполосной системы громкоговорителей,

а - с разделительным конденсатором; б - с последовательным контуром L 3 C 3 .

Имеется более простой вариант схемы включения громкоговори­телей в трехполосной системе. Он показан на рис. 62, а . Здесь при­меняется двухполосный фильтр с более низкой частотой раздела, а высокочастотная головка подключена к фильтру второй полосы с помощью разделительного конденсатора C 3 . Эта схема содержит только два полосовых фильтра и конденсатор вместо двух пар полосовых фильтров, описанных выше. Однако, строго говоря, схема на рис. 62 является двухполосной, к которой добавлена высокоча­стотная головка. В результате этого на высших частотах могут из­лучать как высокочастотная головка, так и среднечастотный громко­говоритель, что может увеличить неравномерность частотной харак­теристики вэтой области частот. Поэтому более эффективной сле­дует считать схему с фильтрами, разделяющими весь диапазон па три полосы. Существует еще одна разновидность трехполосной си­стемы, когда к двухполосной системе подключают дополнительный громкоговоритель последовательно с простым последовательным контуром. Такая схема показана на рис. 62, б . Этой схемой можно ком­пенсировать провалы в частотной характеристике громкоговорителя основной двухполосной системы. Иногда небольшой подъем отдачи и области средних частот (не более 8-10 дб ), создаваемый дополни­тельным громкоговорителем, значительно улучшает качество звуко­воспроизведения: лучше распознаются отдельные инструменты ор­кестра. Это особенно заметно при сравнении звучания с акустиче­ским агрегатом, у которого снижена отдача на средних частотах, даже если такое понижение не выходит из допусков.

Конденсатор и катушку индуктивности для полосового фильтра, которые включают последовательно с головкой, воспроизводящей средние частоты или компенсируют какой-либо провал в характе­ристике (рис. 62, б ), рассчитывают довольно просто. Из курса радио­техники известно, что для последовательного контура (LC ) сущест­вуют следующие соотношения:

И ,

где - угловая резонансная частота, гц; Z К - характеристиче­ское сопротивление контура, которому по отдельности равняются емкостное и индуктивное сопротивления конденсатора и дросселя при резонансной частоте, т.е.

Полагая величину Z K равной полному сопротивлению, которое имеет на частоте коррекции дополнительный громкоговоритель (Z К = Z ДОП ), включаемый через последовательный контур, можно под­считать нужные величины емкости конденсатора C 3 и индуктивности дросселя L 3

Следует иметь в виду, что ширину частотной области, в которой излучает дополнительная головка, можно расширить, уменьшив ве­личину индуктивности L 3 , как это следует из формулы

откуда

Здесь - ширина резонансной кривой па высоте 0,7 от макси­мума, гц; L 3 - индуктивность, гн; R ГР - активное сопротивление го­ловки, ом.

В связи с этим при желании расширить полосу частот, воспро­изводимых дополнительной головкой, следует уменьшить индуктив­ность L 3 против расчетной величины и во столько же раз увеличить емкость C 3 .

Такой метод коррекции частотной характеристики звукового давления громкоговорителя может быть успешно использован и для улучшения воспроизведения низших частот в этом случае дополни­тельный корректирующий громкоговоритель используют, главным образом, в области его основной резонансной частоты, на которую и рассчитывают последовательный контур, т. е.

Если дополнительный громкоговоритель аналогичен основному и отличается частотой основного резонанса не более чем на ±10 гц , то при установке его вблизи основного (рядом) получится повыше­ние уровня на 3 дб и улучшится согласование нагрузки с усилителем, так как на частоте основного резонанса входное сопротивление гром­коговорителя возрастает в 3-5 раз. Индуктивность дросселя и ем­кость конденсатора рассчитывают по вышеприведенным формулам для последовательного контура L 3 C 3 . Однако ввиду того, что резо­нансная частота контура соответствует частоте механического резо­нанса громкоговорителя, индуктивность по расчету получится значи­тельной. Рекомендуется уменьшить ее в 2-4 раза, увеличив во столько же раз емкость конденсатора.

Следует объяснить, почему от всех разделительных фильтров требуется, чтобы на частоте раздела они делили поровну мощность между головками, работающими в соседних полосах, т. е. снижали уровень напряжения на каждой головке на 3 дб. Эта величина выбрана потому, что, как будет показано дальше, сложение двух оди­наковых уровней, создаваемых двумя источниками звука, повышает общий уровень на 3 дб. Следовательно, снижение фильтрами на частоте раздела напряжения на головках (а также и звукового давления) приводит в результате сложения к последующему выравни­ванию общего звукового давления, конечно, если они включены синфазно и отдача обоих головок на частоте раздела одинакова. Однако, к сожалению, чаще имеет место различие в среднем стандартном звуковом давлении, создаваемом различными головками.

В связи с таким положением рекомендуется средне- и высоко­частотную головки присоединять к разделительным фильтрам через низкоомный ступенчатый аттенюатор с 3-5 ступенями регулировки, как это показано на рис. 63. Важной особенностью аттенюатора яв­ляется постоянство его входного сопротивления. Оно может быть сделано равным полному сопротивлению головки, на которое рассчитан разделительный фильтр. Каждая ступень регулировки долж­на давать снижение уровня (затухание) порядка 2 дб, что соответ­ствует уменьшению напряжения (и звукового давления) примерно на 20%, т.е. до 0,8 от исходной величины. Сопротивление последовательного (r 1 ) к параллельного (r 2 ) резисторов находят по фор­мулам

где Z ГР - полное сопротивление головки; k - коэффициент пере­дачи аттенюатора; мы выбрали для первой ступени k =0,8. При оп­ределении сопротивлений резисторов для второй и далее ступеней регулировки следует по рис. 1 определить значение k , которое для второй ступени, создающей общее затухание 4 дб, будет k =0,63, для третьей (6 дб) k =0,5 и т. д. Надо также иметь в виду, что сопротив­ления последовательного и параллельных резисторов могут созда­ваться либо отдельными резисторами независимо друг от друга, как это показано на рис. 63, б, либо с использованием резисторов предыдущей ступени (рис. 63, в ). Во втором варианте необходимо, рас­считав сопротивления резисторов для данного затухания, отнять от рассчитанной величины сумму сопротивлений резисторов, включен­ных между нулевым контактом и предыдущим тому, для которого ведется расчет (при этом расчет сопротивления r 2 ведут, начиная с максимального затухания). Иначе говоря, вычитанием определяется то сопротивление, которое надо добавить к уже подсчитанным, чтобы получить сопротивление, соответствующее данному затуханию. Для удобства определения сопротивления резисторов r 1 и r 2 в зависимости от полного сопротивления громкоговорителя для разных за­туханий и при условии равенства входного сопротивления аттеню­атора и полного сопротивления головки (r АТТ = Z ГР ) на рис. 64 приведены расчетные графики.


Рис. 63. Схемы включения аттенюатора.

а - принципиальная; б, в - практические варианты.

Конденсаторы во всех приведенных схемах разделения частот и разделительных фильтрах желательно иметь бумажные. Их но­минальное рабочее напряжение может быть выбрано минимальным. Можно применять электролитические конденсаторы, но из-за отсут­ствия в цепи постоянной составляющей необходимо взять два таких конденсатора, каждый вдвое большей емкости, и соединить их по­следовательно одинаковой полярностью. Такое включение конденса­торов называется биполярным, и оно иногда используется (напри­мер, в радиоле "Симфония") наряду со специальными типами бипо­лярных электролитических конденсаторов. Можно специально соз­дать схему с вспомогательным источником постоянного напряжения для поляризации электролитических конденсаторов. Однако выпуска­ется достаточный ассортимент необходимых типов и величин бумаж­ных конденсаторов сравнительно небольших размеров для рабочего напряжения 120-160 в, например типа МБГО. Их габариты к тому же не имеют существенного значения при размещении в ящике гром­коговорителя. Дроссели для схем разделительных фильтров лучше применять без стального сердечника, так как всегда имеется опас­ность появления дополнительных нелинейных искажений вследствие нелинейности кривой намагничивания сердечника. Лучше применять в качестве дросселей простые многослойные катушки без сердеч­ников.

Для уменьшения потерь звуковой энергии намотку дросселей, включаемых последовательно с громкоговорителями, следует выполнять достаточно толстым эмалированным проводом, чтобы активное сопротивление обмотки было в 10-20 раз меньше, чем сопротивле­ние всех громкоговорителей, работающих в данной полосе частот. Индуктивность многослойной катушки, изображенной на рис. 65, может быть подсчитана по формуле

где w - число витков; D - средний диаметр катушки, см; В - ширина намотки, см; А - высота намотки, см.


Рис. 64. Графики для расчета сопротивлений аттенюатора.

Если принять конфигурацию катушки такой, что d = A , A = 1,2 B , а D =2 A =2,4 B , то формула для индуктивности и расчет дросселя сильно упрощается:

Расчет дросселя ведется следующим образом: задаемся сопро­тивлением обмотки r др (r др =0,05/0,1 R ГР ) и шириной катушки B . Площадь сечения обмотки принятой конфигурации будет S 0 = AB =1,2 B 2 , a объем обмотки V 0 = S 0 3,14 D =9 B 3 . Определяем с помощью приведенной здесь табл. 2 число витков и сопротивление обмотки для подсчитанных S 0 и V 0 и какого-либо выбранного диаметра про­вода и сопоставляем сопротивление с требующимся, а по уклады­вающемуся числу витков обмотки подсчитываем индуктивность.

Таблица 2

Диаметр по меди

Число плотно

намотанных витковна 1 см 2 сечения обмотки

Сопротивление кубического сантиметра непрерывной намотки, ом

0,668

0,28

0,137

0,076

0,0444

0,0284

0,0189

0,013

0,00924

0,00678

Рис. 65. Кон­фигурация катушки дросселя разделитель­ного фильтра.

Если рассчитанные индуктивность и сопротивление катушки оказываются меньше требующихся, тогда проделывают то же самое для меньшего диаметра провода. Если сопротивление обмотки увеличивать нельзя, то, сохраняя прежний диаметр про­вода, увеличивают размеры катушки, т. е. B , и тем самым возможное число витков. Обычно дроссели де­лают бескаркасными, т. е. обмотка наматывается на болванке со съемными щеками, которые по оконча­нии намотки удаляются, а обмотка для прочности стягивается лентой или ниткой в 4-5 местах по окружности.

Рассчитаем в качестве примера дроссель индуктивностью 30 мгн, сопротивлением 2,5-3,5 ом и шириной обмотки B =3 см. Площадь сечения обмотки равна S 0 =1,2 В 2 = 10,8 см 2 ; объем обмотки равен Vo =9 B 3 =243 см 3 . Находим с помощью таблицы, что из про­вода диаметром 1 мм обмотка будет иметь сопротивление 4,6 ом и количество витков 840. По формуле подсчитываем индуктивность.

Она будет равна:

Так как сопротивление получилось завышенным, а индуктив­ность близкой, увеличим немного размеры катушки (примем B = 3,4 см ) и диаметр провода (примем 1,2 мм ). Новая площадь се­чения обмотки и ее объем равны S 0 =13,9 см 2 ; V o =352 см 3 . Находим по таблице, что обмотка будет иметь 765 витков и сопротивление 3,25 ом; ее индуктивность составит L =32 мгн. Дроссель с такими индуктивностью и сопротивлением удовлетворяет заданию.

С целью снижения интермодуляционных искажений при звуковоспроизведении громкоговорители Hi-Fi систем составляют из низкочастотных, среднечастотных и высокочастотных динамических головок. Их подключают к выходам усилителей через разделительные фильтры, представляющие собой комбинации LC фильтров нижних и верхних частот.

Ниже приведена методика расчета трехполосного разделительного фильтра по наиболее распространенной схеме.

Частотная характеристика разделительного фильтра трехполосного громкоговорителя в общем виде показана на рис. 1. Здесь: N - относительный уровень напряжения на звуковых катушках головок: fн и fв - нижняя и верхняя граничные частоты воспроизводимой громкоговорителем полосы; fр1 и fр2 - частоты раздела.

В идеальном случае выходная мощность на частотах раздела должна распределяться поровну между двумя головками. Это условие выполняется, если на частоте раздела относительный уровень напряжения, поступающего на соответствующую головку, снижается на 3 дБ по сравнению с уровнем в средней части ее рабочей полосы частот.

Частоты раздела следует выбирать вне области наибольшей чувствительности уха (1... 3 кГц). При невыполнении этого условия, из-за разности фаз колебаний, излучаемых двумя головками на частоте раздела одновременно, может быть заметно "раздвоение" звука. Первая частота раздела обычно лежит в интервале частот 400... 800 Гц, а вторая - 4... 6 кГц. При этом низкочастотная головка будет воспроизводить частоты в диапазоне fн...fp1. среднечастотная - в диапазоне fp1... fр2 и высокочастотная - в диапазоне fр2...fв.

Один из распространенных вариантов электрической принципиальной схемы трехполосного громкоговорителя приведен на рис. 2. Здесь: B1 - низкочастотная динамическая головка, подключенная к выходу усилителя через фильтр нижних частот L1C1; В2 - среднечастотная головка, соединенная с выходом усилителя через полосовой фильтр, образованный фильтрами верхних частот C2L3 и нижних частот L2C3. На высокочастотную головку В3 сигнал подается через фильтры верхних частот C2L3 и C4L4.

Расчет емкостей конденсаторов и индуктивностей катушек производят исходя из номинального сопротивления головок громкоговорителя. Поскольку номинальные сопротивления головок и номинальные емкости конденсаторов образуют ряды дискретных значений, а частоты раздела могут варьироваться в широких пределах, то расчет удобно производить в такой последовательности. Задавшись номинальным сопротивлением головок, подбирают емкости конденсаторов из ряда номинальных емкостей (или суммарную емкость нескольких конденсаторов из этого ряда) такими, чтобы получившаяся частота раздела попадала в указанные выше частотные интервалы.

В разделительных фильтрах обычно используют металлобумажные конденсаторы типов МБГО, МБГП и МБМ с допускаемым отклонением от номинальной емкости не более ± 10%. Наиболее подходящие для использования в фильтрах типономиналы конденсаторов приведены в табл 1.

Тип конденсатора

Емкость, мкф

МБМ
МБГО, МВГП
МБГП
МБГО

0,6
1; 2; 4; 10
15; 26
20; 30

Емкости конденсаторов фильтров С1...С4 для различных сопротивлений головок и соответствующие значения частот раздела приведены в табл 2.

Легко видеть, что все значения емкостей могут быть либо непосредственно взяты из номинального ряда емкостей. либо получены параллельным соединением не более чем двух конденсаторов (см. табл. 1).

После того как емкости конденсаторов выбраны, определяют индуктивности катушек в миллигенри по формулам:

В обеих формулах: Zг-в омах; fp1, fр2 - в герцах.

Поскольку полное сопротивление головки является частотнозависимой величиной, для расчета обычно принимают указанное в паспорте головки номинальное сопротивление Zг, оно соответствует минимальному значению полного сопротивления головки в диапазоне частот выше частоты основного резонанса до верхней граничной частоты рабочей полосы. При этом надо иметь в виду, что фактическое номинальное сопротивление различных образцов головок одного и того же типа может отличаться от паспортного значения на ±20%.

В некоторых случаях радиолюбителям приходится использовать в качестве высокочастотных головок имеющиеся динамические головки с номинальным сопротивлением, отличающимся от номинальных сопротивлений низкочастотной и высокочастотной головок. При этом согласование сопротивлений осуществляют, подключая высокочастотную головку В3 и конденсатор С4 к различным выводам катушки L4 (рис. 2), т. е. эта катушка фильтра играет одновременно роль согласующего автотрансформатора. Катушки можно намотать на круглых деревянных, пластмассовых или картонных каркасах с щечками из гетинакса. Нижнюю щечку следует сделать квадратной; так ее удобно крепить к основанию - гетинаксовой плате, на которой крепят конденсаторы и катушки. Плату крепят шурупами ко дну ящика громкоговорителя. Во избежание дополнительных нелинейных искажений катушки должны выполняться без сердечников из магнитных материалов.

Пример расчета фильтра

В качестве низкочастотной головки громкоговорителя используется динамическая головка 6ГД-2, номинальное сопротивление которой Zг=8 Ом. в качестве среднечастотной - 4ГД-4 с таким же значением Zг и в качестве высокочастотной - ЗГД-15, для которой Zг=6,5 Ом. Согласно табл. 2 при Zг=8 Ом и емкости С1=С2=20 мкф fp1=700 Гц, а при емкости С3=С4=3 мкф fр2=4,8 кГц. В фильтре можно применить конденсаторы МБГО со стандартными емкостями (С3 и С4 составляют из двух конденсаторов).

По приведенным выше формулам находим: L1=L3=2,56 мГ; L2=L4=0,375 мГ (для автотрансформатора L4 - это значение индуктивности между выводами 1-3).

Коэффициент трансформации автотрансформатора

На рис. 3 показана зависимость уровня напряжения на звуковых катушках головок от частоты для трехполосной системы, соответствующей примеру расчета. Амплитудно-частотные характеристики низкочастотной, среднечастотной и высокочастотной областей фильтра обозначены соответственно НЧ, СЧ и ВЧ. На частотах раздела затухание фильтра равно 3,5 дБ (при рекомендуемом затухании 3 дБ).


Отклонение объясняется отличием полных сопротивлений головок и емкостей конденсаторов от заданных (номинальных) значений и индуктивностей катушек от полученных расчетом. Крутизна спада кривых НЧ и СЧ составляет 9 дБ на октаву и кривой ВЧ - 11 дБ на октаву. Кривая ВЧ соответствует несогласованному включению громкоговорителя 1 ГД-3 (в точки 1-3). Как видно, в этом случае фильтр вносит дополнительные частотные искажения.

Примечание редакция . В приводимой методике расчета принято, что среднее звуковое давление при одной и той же подводимой электрической мощности для всех головок имеет примерно одинаковое значение. Вели же звуковое давление, создаваемое какой-либо головкой, заметно больше, то для выравнивания частотной характеристики громкоговорителя по звуковому давлению эту головку рекомендуется подключать к фильтру через делитель напряжения, входное сопротивление которого должно быть равно принятому при расчете номинальному сопротивлению головок.

(РАДИО N 9, 1977 г., с.37-38)

Ирина Алдошина

Дата первой публикации:

фев 2009

Разделительные фильтры в акустических системах.

Практически все современные высококачественные акустические системы являются многополосными, то есть состоящими из нескольких громкоговорителей, каждый из которых работает в своем диапазоне частот. Это обусловлено тем, что практически невозможно создать динамический громкоговоритель, который обеспечивал бы излучение в широком диапазоне частот с малым уровнем искажений (в первую очередь, интермодуляционных, а также переходных, нелинейных и др.) и широкой характеристикой направленности. Поэтому в акустических системах (как профессиональных, так и бытовых) используют несколько громкоговорителей (низкочастотные, среднечастотные, высокочастотные, иногда супервысокочастотные), а для распределения энергии звукового сигнала между ними включают электрические разделительные фильтры.

Влияние разделительных фильтров на формирование характеристик акустических систем в предыдущие годы недооценивалось: им отводилась лишь роль ослабления сигнала за пределами рабочей полосы частот громкоговорителей. Однако развитие техники акустических систем категории Hi-Fi заставило пересмотреть взгляд на роль разделительных фильтров в акустических системах и на методику их проектирования. Многочисленные теоретические и экспериментальные работы, посвященные влиянию разделительных фильтров на коррекцию характеристик излучателей и формирование объективных и субъективных характеристик акустических систем, заставили считать разделительные фильтры одним из важнейших компонентов акустических систем, с помощью которого можно синтезировать многие необходимые электроакустические характеристики и добиться значительного прогресса в обеспечении естественности звучания.

Прежде чем переходить к анализу различных типов фильтров, применяемых в акустических системах, и методам их расчета, остановимся на определении основных параметров фильтров.

Параметры фильтров
Фильтром называется устройство, пропускающее определенные спектральные составляющие в сигнале и не пропускающее (ослабляющее) остальные. Фильтр может быть реализован в виде аналоговой схемы (пассивные и активные фильтры), а также реализован программно или в виде цифрового устройства (цифровые фильтры).

В современных акустических системах применяются как пассивные, так и активные фильтры (кроссоверы). Первые включаются после общего усилителя в каждом канале, вторые включаются до усилителя. Общая схема включения показана на рис.1. Активные фильтры имеют ряд преимуществ перед пассивными фильтрами, поскольку их значительно легче перестраивать, можно реализовать различными способами, в них отсутствуют потери мощности и т. д. Однако активные фильтры проигрывают пассивным по таким параметрам, как динамический диапазон, нелинейные искажения, уровень шумов и др. Методы проектирования активных фильтров широко освещены в специальной литературе, поэтому здесь остановимся только на методах проектирования пассивных фильтров, которые широко используются в современных акустических системах.

Основными параметрами, определяющими свойства фильтров, являются:
- полоса пропускания - область частот, в которой фильтры пропускают сигнал;
- полоса задерживания - область частот, где фильтры существенно подавляют сигнал;
- частота среза f ср - частота, на которой сигнал ослабляется на 3 дБ по отношению к среднему уровню в полосе пропускания.

По характеру расположения полосы пропускания и полосы задерживания фильтры разделяются на четыре основных типа.

Фильтры нижних частот (ФНЧ) пропускают низкочастотные составляющие в спектре сигнала (от нуля до частоты среза) и подавляют высокочастотные. Используются для низкочастотных громкоговорителей. Форма частотной характеристики показана на рис. 2.

Фильтры высоких частот (ФВЧ) пропускают высокочастотные составляющие (от частоты среза и выше) и подавляют низкочастотные. Применяются для высокочастотных громкоговорителей. Форма АЧХ показана на рис. 2.

Полосовые фильтры (ПФ) пропускают определенные полосы частот (от f ср1 до f ср2 ) и подавляют нижние и верхние частоты. Применяются для среднечастотных громкоговорителей, рис. 2.

Существуют также режекторные фильтры, которые представляют собой комбинацию низкочастотного и высокочастотного фильтров. Они подавляют спектральные составляющие сигнала в определенной полосе частот и пропускают в других полосах. Применяются иногда в акустических системах для вырезания отдельных пиков и провалов на АЧХ.

Кроме того, каждый из перечисленных фильтров характеризуется следующими параметрами: крутизной спада АЧХ при переходе от полосы пропускания к полосе задерживания, неравномерностью в полосе пропускания и задерживания, резонансной частотой и добротностью (Q). В зависимости от структуры фильтра и количества элементов в нем может быть обеспечена разная крутизна спада АЧХ. Обычно в акустических системах используются фильтры с крутизной спада 12 дБ/окт, 18 дБ/окт и 24 дБ/окт (рис. 3), которые, соответственно, называются фильтрами второго, третьего и четвертого порядков.

Простейшая структура LC-фильтра низких частот второго порядка показана на рис. 4. Она включает в себя следующие элементы: индуктивность L, реактивное сопротивление которой прямо пропорционально частоте (XL = 2πfL), и емкость C, реактивное сопротивление которой обратно пропорционально частоте (ХС = 1/2πfC). Поэтому представленная на рис. 4а цепь пропускает низкие частоты (поскольку сопротивление индуктивности L мало на низких частотах) и обеспечивает затухание высоких частот. Фильтр высоких частот имеет обратную структуру (рис. 4б) и, соответственно, пропускает высокие частоты и задерживает низкие.

Вид АЧХ фильтров высоких частот второго порядка при разных значениях добротности показан на рис. 5. Резонансная частота такого фильтра определяется как f=1/(LC)1/2 , а добротность как Q = [(R2 C)/L]1/2 .

Из рис. 5 видно, что изменения значения добротности меняет характер спада АЧХ от гладкого (при Q = 0.707) до спада с подъемом на частоте резонанса (Q = 1).

По имени ученых, которые математически описали передаточные функции фильтров (то есть их формы частотных характеристик), они получили разное название: фильтры с добротностью Q = 1 называются фильтрами Чебышева, Q = 0.707 - Баттерворта, Q = 0.58 - Бесселя, Q = 0.49 - Линквица-Риле. Каждый из указанных типов фильтров имеет свои преимущества и недостатки.

Передаточная функция

Под передаточной функцией фильтра понимается отношение комплексной амплитуды напряжения на выходе фильтра к комплексной амплитуде напряжения на входе. Обычно передаточные функции физически реализуемых и устойчивых линейных цепей описываются в виде математических формул, знаменатели которых являются выражениями следующего вида (полиномами): Gn(s) = an sn +a n-1 sn-1 +…….+a1 s+1. Порядок фильтра определяется степенью n от комплексной частоты s, которая связана с обычной круговой частотой как s = jω. (величина j называется мнимой единицей ). Выбор вида коэффициентов аn определяет принадлежность фильтров к типу Баттерворта, Чебышева и др. Например, полиномы Баттерворта разных порядков имеют вид В1 (s) = (1+s); B2 (s) = (1+1,414s+s2 ) и т. д.

В акустических системах проблема выбора фильтров усложняется тем, что необходимо выбрать три или два (в зависимости от количества полос) типа фильтров одинаковых или разных порядков, которые совместно с громкоговорителями обеспечивали бы суммарные характеристики акустической системы (такие как амплитудно-частотная характеристика - АЧХ, фазочастотная характеристика - ФЧХ, групповое время задерживания - ГВЗ, и др.) с требуемыми параметрами внутри эффективно-воспроизводимого диапазона частот.

История создания фильтров
История создания разделительных фильтров начинается одновременно с появлением многополосных акустических систем. Одну из первых теорий разработали в 30-е годы инженеры G. A. Campbell и О. J. Zobel из фирмы Bell Labs (США). Первые публикации относятся к этому же периоду, их авторы K. Hilliard и H. Kimball работали в звуковом отделе фирмы Metro Goldwin Meyer. В 1936 году в мартовском номере Academy Research Council Technical Bulletin была опубликована их статья "Разделительные фильтры для громкоговорителей". В январе 1941 года K. Hilliard в журнале Electronics Magazine также опубликовал работу "Разделительные фильтры громкоговорителей", содержавшую все необходимые формулы для создания цепей Баттерворта первого и третьего порядков (как для параллельных, так и для последовательных схем). К 50-м годам фильтры Баттерворта были признаны предпочтительными для разделительных целей акустических систем. Тогда же в 60-х J. R. Ashley и R. Small впервые описали свойства "всепропускающих" фильтрующих схем, а также линейно-фазовых цепей.

Выяснению количественного соотношения затухания, вносимого фильтрами вне полосы пропускания, и величины интермодуляционных искажений вследствие перекрывания полос акустических систем, была посвящена статья "Фильтрующие цепи и модуляционные искажения" (автор R. Small), опубликованная в JAES в 1971 году. В ней было показано, что минимальная величина затухания должна быть 12 дБ/окт, чтобы предотвратить искажения в полосе перекрытия. Тогда же Ashley и L. М. Неnnе исследовали "всепропускающие" и "фазокогерентные" свойства фильтров Баттерворта третьего порядка. В 1976 году S. Linkwitz исследовал полярную диаграмму направленности для двухполосных систем с разнесенными излучателями и убедился, что акустические системы с разделительными фильтрами Линквитца-Риле обеспечивают ее симметричность.

Чуть позднее P. Garde дал полное описание всепропускающих фильтров и их разновидностей. Используя его идеи, D. Fink в соавторстве с Е. Long развил метод коррекции горизонтального (то есть глубинного) смещения головок громкоговорителей в акустических системах путем введения линий задержки в фильтр. Существенный вклад в теорию фильтрации внесли W. Marshall-Leach и R. Bullock, которые впервые ввели понятие оптимизации фильтров по типу и порядку с учетом смещения головок по двум осям. В продолжение этих работ R. Bullock описал свойства трехполосных симметричных фильтров и доказал, что трехполосная система фильтров не может быть получена как простая комбинация двухполосных, вопреки бытовавшему мнению. S. Lipshitz и J. Vanderkooy в серии статей рассмотрели различные варианты построения фильтров с минимально фазовыми характеристиками.

Новый этап в исследовании и проектировании многополосных акустических систем с разделительными фильтрами наступил с началом активной компьютеризации расчетов на основе программ ХОРТ, CACD, CALSOB, Filter Designer, LEAP 4.0 и др.

До недавнего времени конструирование разделительных фильтров в акустических системах шло практически методом "проб и ошибок". Это объясняется тем, что все теоретические работы прошлых лет, посвященные расчету разделительных фильтров в акустических системах, исходили из условия идеальности самих громкоговорителей. При анализе свойств разделительных фильтров того или иного типа и рассмотрении их влияния на характеристики акустических систем пренебрегали направленными свойствами громкоговорителей и условиями их физического размещения в корпусе акустической системы. Считали, что громкоговорители обладают плоской АЧХ, не вносят фазовых сдвигов в воспроизводимый сигнал и имеют активное входное сопротивление. Вследствие сказанного разработчики часто сталкивались с тем, что разделительные фильтры, обеспечивающие в идеализированных условиях требуемые характеристики, оказывались неприемлемыми при работе с реальными громкоговорителями, имеющими собственные амплитудно-частотные и фазочастотные искажения, комплексное входное сопротивление и обладающими направленными свойствами. Это и явилось причиной интенсификации в последние годы работ по созданию оптимизационных методов расчета разделительных фильтров-корректоров.

Выбор частот разделения
Как уже было отмечено, разделительные фильтры оказывают существенное влияние на такие характеристики многополосных акустических систем, как АЧХ, ФЧХ, ГВЗ, характеристики направленности, распределение мощности входного сигнала между излучателями, входное сопротивление акустической системы, уровень нелинейных искажений.

Начальным этапом в проектировании разделительных фильтров в многополосных акустических системах является обоснованный выбор частот разделения (частот среза) низкочастотного, средне-частотного и высокочастотного каналов. При выборе частот разделения обычно используют следующие предпосылки.

1. Обеспечение возможно более равномерных характеристик направленности, то есть отсутствия "скачков" ширины диаграммы направленности при переходе от низкочастотного к среднечастотному и от средне- к высокочастотному громкоговорителю, поскольку в той области частот, где они работают вместе, при отсутствии фильтра, диаграмма направленности резко сужается за счет расширения площади излучения.

2. Сохранение плавного изменения ширины характеристики направленности (по той же причине). Громкоговорители стараются размещать как можно ближе друг к другу и располагать их друг над другом в вертикальной плоскости (что позволяет избежать искажений характеристики направленности в горизонтальной плоскости, так как это отрицательно сказывается на воспроизведении стереопанорамы). Если выбор частоты разделения и расстояния между громкоговорителями влияет на ширину характеристики направленности, то соотношение фаз и амплитуд сигналов разделяемых частотных каналов влияет на ориентацию характеристики направленности в пространстве. Различные типы фильтров, как будет показано далее, в разной степени влияют на наклон характеристики направленности в пространстве в области частот разделения.

3. Ослабление пиков и провалов на АЧХ громкоговорителей, возникающих из-за потери поршневого характера движения диффузора. Выбор частоты среза и крутизны спада АЧХ фильтров для низкочастотных и среднечастотных громкоговорителей стараются осуществлять таким образом, чтобы первые резонансные пики и провалы ослаблялись не менее, чем на 20 дБ.

4. Ограничение амплитуды смещения подвижных систем средне- и высокочастотных громкоговорителей в низкочастотной части излучаемого ими спектра (и, соответственно, подводимой мощности) до значений, определяемых их механической и тепловой прочностью, что повышает надежность их работы и снижает уровень нелинейных искажений. Эти задачи регулируются как выбором частоты среза, так и выбором крутизны среза, которая должна составлять не менее 12 дБ/окт.

5. Обеспечение требуемого уровня звукового давления, поскольку с повышением частоты среза в области высоких частот можно увеличить уровень подаваемого напряжения, например, на высокочастотный громкоговоритель (поскольку амплитуды смещения диффузора с повышением частоты понижаются). Это позволяет увеличить, соответственно, уровень звукового давления в высокочастотной части АЧХ.

6. Снижение уровня нелинейных искажений, в частности, за счет эффекта Доплера (возникающих при модуляции высокочастотных составляющих низкочастотными компонентами сигнала).

Как правило, частоты среза в современных трехполосных акустических системах находятся в пределах: для низкочастотного громкоговорителя - 500...1000 Гц, для среднечастотного - от 500...1000 Гц до 5000...7000 Гц, для высокочастотного - 2000...5000 Гц.

Влияние на суммарные характеристики
Анализ влияния разделительных фильтров на формирование суммарных АЧХ, ФЧХ и других характеристик акустических систем удобно производить на некоторой идеализированной модели, в которой предполагается, что громкоговорители имеют активное сопротивление и идеальные характеристики (плоская АЧХ, линейная ФЧХ, постоянный сдвиг фаз между излучателями и др.). При расчете фильтров необходимо предварительно выбрать частоту среза (как уже было показано ранее), порядок и тип фильтра (Баттерфорта, Чебышева, Линквитца-Риле или др.).

По получаемым суммарным характеристикам фильтры, обычно применяемые в акустических системах, можно разделить на три группы: фильтры линейно-фазовые (in-phase), фильтры всепропускающие-(all-pass) и все остальные.

Фильтры линейно-фазовые (in-phase) обеспечивают частотно-независимую суммарную АЧХ, линейную ФЧХ (точнее, равную нулю на всех частотах), а также равную нулю ГВЗ. Примером могут служить фильтры Баттерворта первого порядка. Суммарные характеристики для двухполосной системы с такими фильтрами показаны на рис. 6. Опыт их использования в акустических системах показал, что они обладают рядом недостатков: плохой избирательной способностью, большой неравномерностью характеристик мощности сигнала, плохой характеристикой направленности в полосе раздела и др. Поэтому в настоящее время они в акустических системах категории Hi-Fi не применяются.

Фильтры всепропускающие (all-pass) обеспечивают плоскую суммарную АЧХ, частотно-зависимые ФЧХ и ГВЗ. Требования к линейности ФЧХ является избыточным для акустических систем - достаточно, чтобы их ГВЗ были ниже порогов слышимости (как показывают результаты измерений, фильтры такого типа вносят искажения ГВЗ в полосе раздела, удовлетворяющие этим требованиям). К этому типу фильтров относятся фильтры Баттерворта нечетких порядков и фильтры Линквица-Риле четных порядков. При этом свойства фильтров реализуются при разной полярности включения каналов: для 2, 6, 10 порядков требуется включение каналов в противофазе, для 4, 8, 12 - нет. Для нечетных порядков: 1, 5, 9 должны включаться синфазно, 3,7… -противофазно. Суммарные и поканальные характеристики фильтров Линквица-Риле второго порядка и Баттерворта третьего порядка для двухканальной идеализированной акустической системы показаны на рис. 7 и рис. 8. Следует отметить (будет показано далее), что фильтры нечетких порядков создают поворот главного лепестка характеристики направленности в области частоты раздела.

Существует довольно большой класс фильтров, которые применяются в акустических системах, но они не относятся к "всепропускающему" типу. Сюда включаются фильтры второго и четвертого порядка Баттерворта, второго и четвертого порядка Бесселя, группа ассиметричных фильтров четвертого порядка Лежандра, Гаусса и др. Они не дают суммарную плоскую характеристику, но этот недостаток можно частично исправить, если сделать частоты среза между громкоговорителями несовпадающими. Например, на рис. 9а показаны характеристики фильтра Баттерворта четвертого порядка с пиком АЧХ в 3 дБ на частоте раздела, равной 1000 Гц. Если несколько разнести частоты, то есть сделать частоту раздела для НЧ 885 Гц, а для ВЧ 1138 Гц, то пик на АЧХ исчезает (рис. 9б).



Как уже было сказано, выбор типов фильтров для низко-, средне- и высокочастотного громкоговорителя кроме обеспечения плоской АЧХ в полосах раздела, определяется требованием к обеспечению симметричности характеристики направленности акустической системы.

Внутри полосы пропускания каждого фильтра характеристика направленности акустической системы определяется характеристикой направленности каждого громкоговорителя, но внутри полосы раздела (полосы перекрытия фильтров) они работают совместно, то есть имеются два излучателя (например, средне и высокочастотный), которые разнесены в пространстве и работают на одной и той же частоте раздела. Пример такой системы показан на рис. 10. Пусть для простоты это будут два одинаковых излучателя, работающих в поршневом режиме с одинаковыми характеристиками направленности. На оси OA сигналы приходят в одинаковой фазе и складываются. Если оценить звуковое давление на оси OA", где фазовый сдвиг за счет разности пути от одного и другого громкоговорителя составит φ=π (то есть 180 град), то сигналы будут складываться в противофазе и на характеристике направленности появится провал. При дальнейшем сдвиге от оси в точках, где разница фаз составит 2π (то есть 360 град), опять появится пик. В целом характеристика направленности будет иметь трехлепестковый характер (рис. 10).

Ширина главного лепестка характеристики направленности на частоте раздела зависит от отношения расстояния между громкоговорителями к длине волны, а наклон лепестка зависит от соотношения амплитуд и фаз разделяемых каналов, что определяется также и типом выбранных фильтров.

Для уменьшения этого явления надо стараться уменьшить расстояние между громкоговорителями (например, за счет применения коаксиальных громкоговорителей), уменьшить ширину полосы раздела (за счет выбора фильтров более высоких порядков) и, наконец, выбрать соответствующий тип фильтра, поскольку каждый фильтр вносит свои частотно-зависимые фазовые сдвиги.

Например, при использовании фильтров третьего порядка типа Баттерворта происходит поворот главного лепестка характеристики направленности вниз (при включении громкоговорителей в одинаковой фазе), рис. 11. При включении громкоговорителей в противофазе (то есть изменении их полярности) лепесток характеристики направленности смещается в другую сторону относительно оси.

Анализ фильтров различных типов и порядков показал, что фильтры четных порядков (всепропускающего типа) не изменяют симметричности направления лепестков, фильтры нечетных порядков поворачивают лепесток вниз или вверх. Симметричные характеристики направленности обеспечивают наибольшую равномерность излучаемой акустической мощности.

Помимо влияния на характеристику направленности по АЧХ фильтры могут оказывать влияние на фазочастотные характеристики и ГВЗ в полосе раздела. То есть характер переходных процессов, несмотря на симметрию АЧХ, может отличаться при одинаковых углах смещения в верхней и нижней полуплоскости, и ГВЗ, будучи ниже порогов слышимости на оси, могут превосходить пороги слышимости в других точках пространства, тем самым ухудшая качество звучания.

Следует еще раз напомнить, что все сделанные выводы относятся только к случаю идеальных характеристик громкоговорителей. Учет реальных характеристик производится с помощью современных компьютерных программ.

Расчет пассивных акустических фильтров
Приступая к расчету пассивных акустических фильтров, необходимо уже четко определиться с конфигурацией системы (количеством полос воспроизведения, типами головок громкоговорителей и их параметрами, видом оформления - корпуса), а также выбрать порядок и тип фильтров в зависимости от основных задач, которые должны решаться при проектировании акустической системы: плоская АЧХ, линейная ФЧХ, симметричная характеристика направленности и др.

Поскольку в настоящее время в акустических системах чаще всего применяются фильтры типа "всепропускающих" (all-pass) с плоской АЧХ, то приведем приближенный расчет такого типа фильтров (более точные расчеты выполняются компьютерными методами).

Сначала разделительные фильтры рассчитываются из условия, что они нагружены на чисто активное сопротивление и питаются от генератора напряжения с малым выходным сопротивлением. Затем принимаются меры для учета влияния комплексной частотно-зависимой нагрузки громкоговорителей.

Расчет начинается с определения порядка фильтров и расчета элементов фильтра-прототипа. Фильтром-прототипом называется фильтр лестничного типа, элементы которого нормированы относительно единичной частоты среза и единичной нагрузки. Затем рассчитывается фильтр нижних частот для реальной частоты среза и реальной нагрузки, а из него путем преобразования частоты находятся элементы фильтра верхних частот и полосового фильтра.

Нормированные значения элементов фильтров-прототипов с первого по шестой порядок приведены в таблице 1.

Значения этих элементов даны только для фильтров "всепропускающего" типа, для других типов фильтров значения элементов в таблице будут другими. Схема фильтра-прототипа шестого порядка представлена на рис. 12. Фильтры меньших порядков получаются путем отбрасывания соответствующих элементов α (начиная с больших).

Значения реальных параметров фильтров для заданного порядка, сопротивления нагрузки R н (Ом) и частоты среза f i (Гц) определяются следующим образом.

1. Для фильтра нижних частот:
- каждая индуктивность-прототип α1 , α3 , α5 (рис. 12) заменяется на реальную индуктивность по формуле L=αi Rн/2πf1 ,(1) где i=1,3,5, f1 - частота среза фильтра нижних частот;
- каждая емкость-прототип α2 , α4 , α6 заменяется на реальную емкость по формуле C=αi /2πf1 Rн,(2) где i=2,4,6.

2. Для фильтра верхних частот (расчет происходит наоборот):
- каждая индуктивность-прототип α1 , α3 , α5 заменяется на реальную емкость C=1/2πf2 Rнαi ,(3) где i=1,3,5, f2 - частота среза фильтра верхних частот;
- каждая емкость-прототип заменяется на реальную индуктивность L=Rн/2πf2 αi ,(4) где i=2,4,6.

3. Для полосового фильтра:
- каждая индуктивность-прототип α1 , α3 , α5 заменяется на последовательный контур из реальных L- и C-элементов, рассчитываемых по формулам:
L=αi Rн/2π(f2 -f1 ),(5) С=1/4π2 f0 2 L,(6)
где - средняя частота полосового фильтра;
- каждая емкость-элемент α2 , α4 , α6 заменяется на параллельный контур из реальных L- и C-элементов, рассчитываемым по формулам:
С=αi /2π(f2 -f1 )Rн,(7) L=1/4π2 f0 2 C.(8)

Пример расчета разделительных фильтров для трехполосной АС

Для расчета выбираем следующие параметры: фильтры всепропускающего типа второго порядка, то есть схема фильтра-прототипа будет включать только элементы α1 , α2 , Rн (рис. 12). Частоты раздела между низкочастотным и среднечастотным каналами равны 500 Гц, между средне- и высокочастотным каналами равны 5000 Гц. Сопротивление громкоговорителей (на постоянном токе): низкочастотного и среднечастотного Re=8 Ом, высокочастотного Re=16 Ом. Значение нормированных параметров элементов определим из табл. 1: α1 =2,0, α2 =0,5.

Значения реальных элементов фильтра нижних частот находим по выражениям (1) и (2):
L1НЧ = α1 Rн/2πf1 = 2,0∙8,0/(2∙3,14∙500) = 5,1 мГн,
C1НЧ = α1 /2πf1 Rн = 0,5/(2∙3,14∙500∙8,0) = 20 мкФ.

Значения элементов полосового фильтра (для среднечастотного громкоговорителя) определяем в соответствии с выражениями (5)... (8):
L1СЧ = α1 Rн/2π(f2 -f1 ) = 2,0∙8,0/2∙3,14 (5000 - 500) = 0,566 мГн,
C1СЧ =1/4π2 f0 2 L = 1/4∙3,142 ∙5000∙500∙5,66∙10-4 = 18 мкФ,
С2СЧ = α2 /2π(f2 -f1 ) Rн = 0,5/2∙3,14 (5000-500) ∙8,0 = 2,2 мкФ,
L2СЧ =1/4π2 f0 2 C2СЧ = 1/4∙3,142 ∙5000∙500∙2,2∙I0-6 = 4,6 мГн.

Значения элементов фильтра верхних частот определяем в соответствии с выражениями (3,4):
С1ВЧ = 1/2πf2 Rн α1 = 1/(2∙3,14∙5000∙2,0∙16) = 1,00 мкФ,
L2BЧ = Rн/2πf2 α2 = 16/(2∙3,14∙5000∙2,0) = 0,25 мГн.

Расчеты, выполненные по этим формулам, корректны, только если фильтры нагружены на активное (омическое) сопротивление. Чтобы согласовать параметры фильтров с реальным комплексным сопротивлением громкоговорителей, надо включить дополнительно параллельно каждому громкоговорителю согласующую цепь. Параметры такой цепи находятся из условия, чтобы комплексное сопротивление этой цепи Zсогл и комплексное сопротивление громкоговорителя Zгг компенсировали друг друга при параллельном включении и обеспечивали бы в сумме активное сопротивление, то есть 1/ Zсогл+1/ Zгг=1/Re.

Для расчета элементов такой цепи строится эквивалентная электрическая схема громкоговорителя (см. предыдущую статью в декабрьском номере МО за 2008 год), и по отношению к ней создается дуальная компенсирующая цепь. Схема эквивалентной цепи громкоговорителя и соответствующей компенсирующей цепи показаны на рис. 13. Для компенсации входного сопротивления низкочастотного громкоговорителя можно использовать упрощенную цепь (поскольку резонанс громкоговорителя находится значительно ниже частоты среза фильтра и не оказывает влияния на его параметры), состоящую из двух элементов Rk1 =Re и Ck1 =Lvc/Re2 , где Re и Lvc - сопротивление и индуктивность звуковой катушки громкоговорителя.

Для средне- и высокочастотного громкоговорителя полная компенсирующая цепь включается, только если частота среза и резонансы громкоговорителей находятся близко друг от друга - в противном случае достаточно применять упрощенную цепь (расчет параметров полной цепи приведен в книге Алдошина И. А., Войшвилло А. Г. "Высококачественные акустические системы"). Кроме того, в схему иногда включаются дополнительно режекторные фильтры, чтобы убрать отдельные пики на амплитудно-частотной характеристике.

Пример схемы фильтров для трехполосной акустической системы с учетом согласующих цепей режекторного звена для среднечастотного громкоговорителя и дополнительного Г-образного аттенюатора, состоящего из двух резисторов для выравнивания уровней по звуковому давлению между НЧ-, СЧ- и ВЧ-громкоговорителями, показан на рис. 14.

В настоящее время для расчета фильтрующе-корректирующих цепей используются компьютерные методы оптимального синтеза линейных электронных схем. Для этого задаются структура фильтра и начальные значения элементов, затем производится расчет суммарных выходных значений АЧХ, ФЧХ и ГВЗ с учетом реальных измеренных параметров громкоговорителей, размещенных в корпусе, и путем целенаправленного изменения элементов схемы минимизируется разница между реальными и заданными параметрами. Применение методов оптимального проектирования позволяет обеспечить наилучшее широкополосное согласование параметров фильтров и громкоговорителей и получить оптимально достижимое значение параметров акустической системы.

Сейчас активно проводятся исследования по применению цифровых фильтров-процессоров в акустических системах, что позволяет перестраивать параметры системы в реальном времени в зависимости от вида звукового сигнала, а также обеспечивать оптимальное согласование характеристик акустической системы с параметрами помещения, но эта техника находится еще в начале своего развития и пока не нашла широкого применения в промышленных разработках.

error: