Я уже не раз говорил что множество вещей которые нас окружают могли бы быть реализованы гораздо раньше, но почему-то вошли в наш быт совсем недавно. Все мы сталкивались с люминесцентными лампами – такими белыми трубками с двумя штырьками на торцах. Помните, как они раньше включались? Вы нажимаете клавишу, лампа начинает промаргивать и наконец, входит в свой обычный режим. Это реально раздражало, поэтому дома подобные штуковины не ставили. Ставили в общественных местах, на производстве, в офисах, в цехах заводов — они действительно экономичные по сравнению с обычными лампами накаливания. Вот только моргали они с частотой 100 раз в секунду и многие это моргание замечали, что раздражало еще больше. Ну и еще для запуска к каждой лампе полагался пускорегулирующий дроссель, такая себе, железячка с массой под килограмм. Если он был собран недостаточно качественно, то довольно мерзко жужжал, тоже с частотой 100 герц. А если в помещении где вы работаете таких ламп десятки? Или сотни? И все эти десятки синфазно включаются-выключаются 100 раз в секунду и дросселя жужжат, пусть и не все. Неужели это никак не воздействовало?
Но, в наше время можно сказать, что эпоха жужжащих дросселей и моргающих (как при старте, так и при работе) ламп закончилась. Сейчас они включаются сразу и для человеческого глаза их работа выглядит совершенно статичной. Причина – вместо тяжелых дросселей и периодически залипающих стартеров в оборот вошли ЭПРА – электронные пускорегулирующие аппараты. Маленькие и легкие. Однако при одном лишь взгляда на их электрическую схему, возникает вопрос: а что мешало наладить их массовый выпуск еще в конце 70-начале 80х годов? Ведь вся элементная база была уже тогда. Собственно, кроме двух высоковольтных транзисторов там задействованы самые простые детали, буквально копеечной стоимости, которые были и в 40-е годы. Ну ладно СССР, тут производство слабо реагировало на технический прогресс (например, ламповые телеки были сняты с производства только в конце 80-х годов), но на Западе?
Итак, по порядку…
Стандартная схема включения люминесцентной лампы была, как и практически всё в ХХ веке, придумана американцами накануне Второй Мировой войны и включала в себя кроме лампы, уже упоминаемые нами дроссель и стартер. Да, еще параллельно сети вешали конденсатор для компенсации фазового сдвига вносимого дросселем или выражаясь еще более простым языком, для коррекции коэффициента мощности.
Дросселя и стартеры
![]() |
Принцип работы всей системы довольно хитрый. В момент замыкания кнопки включения по цепи сеть-кнопка-дроссель-первая спирать-стартер-вторая спираль-сеть начинает течь слабый ток – примерно 40-50 мА. Слабый потому, что в начальный момент сопротивление промежутка между контактами стартера достаточно велико. Однако этот слабый ток вызывает ионизацию газа между контактами и начинает резко возрастать. От этого электроды стартера разогреваются, а поскольку один из них биметаллический, то есть состоит из двух металлов с разной зависимостью изменений геометрических параметров от температуры (разным коэффициентом теплового расширения — КТР) то при нагреве пластина из биметалла изгибается в сторону металла с меньшим КТР и замыкается с другим электродом. Ток в цепи резко возрастает (до 500-600 мА), но всё же его скорость роста и конечная величина ограничены индуктивностью дросселя, собственно индуктивность – это и есть свойство препятствовать мгновенному индуктивность тока. Поэтому дроссель в данной схеме официально называется «аппарат пускорегулирующий». Этот большой ток разогревает спирали лампы которые начинают излучать электроны и подогревать газовую смесь внутри баллона. Сама лампа наполнена аргоном и парами ртути – это важное условие возникновения стабильного разряда. Само собой, что при замыкании контактов в стартере прекращается разряд в нем. Весь описанный процесс на самом деле занимает доли секунды.
![]() |
Теперь начинается самое интересное. Остывшие контакты стартера размыкаются. Но в дросселе уже запасена энергия равная половина произведения его индуктивности на квадрат тока. Она не может мгновенно исчезнуть (см. выше про индуктивность), а потому вызывает появление в дросселе ЭДС самоиндукции (проще говоря – импульса напряжения примерно в 800-1000 вольт для 36-ваттной ламы в 120 см. длиной). Складываясь с амплитудным сетевым напряжением (310 В), оно создает на электродах лампы напряжение достаточное для пробоя – то есть для возникновения разряда. Разряд в лампе создает ультрафиолетовое свечение паров ртути, а оно в свою очередь воздействует на люминофор и заставляет его светиться в видимом спектре. При этом еще раз напомним, дроссель, имея индуктивное сопротивление, препятствует неограниченному возрастанию тока в лампе, что привело бы к ее разрушению или срабатыванию защитного автомата в вашем жилище или другом месте где эксплуатируются подобные лампы. Заметим, что лампа не всегда зажигается с первого раза, иногда нужно несколько попыток чтобы она вошла в устойчивый режим свечения, то есть те процессы которые мы описали, повторяются 4-5-6 раз. Что, действительно, довольно неприятно. После того как лампа вошла в режим свечения ее сопротивление становится значительно меньшим чем сопротивление стартера поэтому его можно вытащить, лампа при этом будет продолжать светиться. Ну и еще, если вы разберете стартер, то увидите что параллельно его выводам подключен конденсатор. Он нужен для ослабление радиопомех создаваемых контактом.
Итак, если совсем кратко и без углубления в теорию, скажем, что включается люминесцентная лампа большим напряжением, а удерживается в светящемся состоянии значительно меньшим (например включается при 900 вольтах, светится при 150). То есть любое устройство включения люминесцентной лампы – это устройство создающее большое напряжение включения на ее концах, а после зажигания лампы уменьшающее его до определенной рабочей величины.
Эта американская схема включения была фактически единственной и только лет 10 назад ее монополия стала стремительно рушиться – на рынок массово вошли Электронные пускорегулирующие аппараты (ЭПРА). Они позволили не просто заменить тяжелые жужжащие дроссели, обеспечить мгновенное включение лампы, но и ввести массу других полезных вещей таких как:
— мягкий пуск ламы – предварительный прогрев спиралей что резко увеличивает срок эксплуатации лампы
— преодоление мерцания (частота питания лампы значительно выше 50 Гц)
— Широкий диапазон входного напряжения 100…250 В;
— понижение энергопотребления (до 30%) при неизменном световом потоке;
— увеличение среднего срока службы ламп (на 50%);
— защиту от скачков напряжения;
— обеспечить отсутствие электромагнитных помех;
— отсутствие бросков коммутационных токов (важно, когда одновременно включается много ламп)
— автоматическое отключением дефектных ламп (это важно, устройства часто бояться работы на холостом ходу)
— КПД качественного ЭПРА — до 97%
— регулирование яркости ламп
Но! Все эти вкусняшки реализованы только в дорогих ЭПРАх. И вообще, не всё так безоблачно. Точнее – может быть всё и было бы безоблачно, если бы схемы ЭПРов сделать по-настоящему надежными. Ведь представляется очевидным, что электронный балласт (ЭПРА) должен быть во всяком случае не менее надежным чем дроссель, особенно если он стоит в 2-3 раза дороже. В «бывшей» схеме состоящей из дросселя, стартера и самой лампы как раз именно дроссель (пускорегулирующий элемент) был самым надежным и, в общем, при качественной сборке мог работать практически вечно. Советские дросселя 60-х годов работают до сих пор, они большие и намотаны довольно толстым проводом. Аналогичные по параметрам импортные дроссели даже таких известных фирм как «Philips» работают не столь надежно. Почему? Вызывает подозрение очень тонкий провод которым они намотаны. Ну и сам сердечник значительно меньше по объему чем у первых советских дросселей, оттого эти дросселя очень сильно нагреваются, что, наверное, тоже влияет на надежность.
Да, так вот, как мне представляется, ЭПРА, во всяком случае дешевые – то есть стоимостью до 5-7 долларов за штуку (что выше чем у дросселя), сделаны заведомо ненадежными. Нет, они могут работать годами и может даже будут работать вечно, но тут как в лотерее – вероятность проигрыша куда выше чем выигрыша. Дорогие ЭПРА сделаны условно-надежными. Почему «условно» мы расскажем чуть позже. Начнем же свой маленький обзор с дешевых. Как по мне, так они составляют 95% покупаемых балластов. А может и почти 100%.
Рассмотрим несколько таких схем. Кстати, все «дешевые» схемы практически одинаковы по конструкции, хотя есть нюансы.
![]() |
Дешевые электронные балласты (ЭПРА). 95% продаж.
Подобного типа балласты стоимостью в 3-5-7 долларов просто включают лампу. В этом состоит их единственная функция. Никаких других полезных наворотов не имеют. Я срисовал пару схем чтобы объяснить как работает это новомодное чудо, хотя как мы говорили выше, принцип работы такой же как и в «классическом» дроссельном варианте — зажигаем большим напряжением, удерживаем малым. Вот только реализован он по-другому.
![]() |
Все схемы электронных балластов (ЭПРА) которые я держал в руках – и дешевые и дорогие — представляли собой полумост – различались только варианты управления и «обвязка». Итак, переменное напряжение 220 вольт выпрямляестя диодным мостом VD4-VD7 и сглаживается конденсатором C1. Во входных фильтрах дешевых электронных балластов, из-за экономии цены и места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Гц, притом, что расчет примерно таков: 1 ватт лампы – 1 мкФ емкости фильтра. В этой схеме 5,6 мкФ на 18 ватт, то есть явно меньше чем надо. Оттого (хотя и не только поэтому), кстати, лампа светится визуально тусклее чем от дорогого балласта на ту же мощность.
Дальше через высоокоомный резистор R1 (1,6 МОм) начинает заряжаться конденсатор С4. Когда напряжение на нем превысит порог срабатывания двунаправленного динистора СD1 (примерно 30 вольт), он пробивается и на базе транзистора T2 появляется импульс напряжения. Открытие транзистора дает старт работе полумостового автогенератора образованного транзисторами Т1 и T2 и трансформатором TR1 c управляющими обмотками включенными противофазно. Обычно эти обмотки содержат по 2 витка, а выходная обмотка 8-10 витков провода.
Диоды VD2-VD3 гасят отрицательные выбросы возникающие на обмотках управляющего трансформатора.
Итак, генератор запускается на частоте близкой к резонансной частоте последовательного контура образованного конденсаторами С2, С3 и дросселем С1. Эта частота может быть равна 45-50 кГц, во всяком случае более точно у меня ее измерить не получилось, не было под рукой запоминающего осцилографа. Обратим внимание, что емкость конденсатора С3 включенного между электродами лампы примерно в 8 раз меньше чем емкость конденсатора С2, следовательно, скачек напряжения на нем во столько же раз выше (так как в 8 раз больше емкостное сопротивление – чем выше частота, тем больше емкостное сопротивление на меньшей емкости). Вот почему напряжение такого конденсатора всегда выбирается не менее 1000 вольт. Одновременно по этой же цепи идет и ток, разогревающий электроды. Когда напряжение на конденсаторе С3 достигнет определенной величины, происходит пробой и лампа зажигается. После зажигания ее сопротивление становится значительно меньшим сопротивления конденсатора С3 и он на дальнейшую работу никакого влияния не оказывает. Частота генератора также понижается. Дроссель L1 как и в случае с «классическим» дросселем теперь выполняет функцию ограничения тока, но поскольку лампа работает на высокой частоте (25-30 кГц), то размеры его во много раз меньше.
Внешний вид балласта. Видно, что в плату не впаяны некоторые элементы. Например там, куда я после ремонта впаял токоограничительный резистор, стоит проволочная перемычка.
Еще одно изделие. Неизвестного производителя. Здесь не пожертвовали 2 диода чтобы сделать «искусственный ноль».
![]() |
![]() |
«Севастопольская схема»
Есть такое мнение что дешевле чем сделают китайцы не сделает никто. Я тоже был в этом уверен. Уверен до тех пор, пока мне в руки не попали ЭПРА некоего «севастопольского завода» — во всяком случае человек который их продавал, сказал именно так. Рассчитаны они были на лампу 58 W то есть 150 см длины. Нет, не скажу что они не работали или работали хуже чем китайские. Они работали. Лампы от них светились. Но…
Даже самые дешевые китайские балласты (ЭПРА) – это пластмассовый корпус, плата с отверстиями, маска на плате со стороны печатного монтажа и обозначение — где какая деталь со стороны монтажа. «Севастопольский вариант» был лишен всех этих избыточностей. Там плата была одновременно и крышкой корпуса, в плате (по этой причине) не было никаких отверстий, не было никаких масок, никаких нанесенных обозначений, детали были размещены со стороны печатных проводников и всё что можно было выполнено из SMD-элементов, чего я никогда не видел даже в самых дешевых китайских устройствах. Ну и сама схема! Я пересмотрел их великое множество, но никогда не видел ничего похожего. Нет, вроде всё как у китайцев: обычный полумост. Вот только назначение элементов D2-D7 и странное подключение базовой обмотки нижнего транзистора мне решительно непонятно. И еще! Создатели этого чудо-устройства совместили трансформатор полумостового генератора с дросселем! Просто намотали обмотки на Ш-образный сердечник. До такого не додумался никто, даже китайцы. В общем, эту схему проектировали или гении или люди альтернативно-одаренные. С другой стороны, если они так гениальны, ну почему не пожертвовать пару центов для введения токоограничительного резистора предотвращающего бросок тока через конденсатор фильтра? Да и на варистор для плавного разогрева электродов (тоже центы) — могли бы разориться.
В СССР
Приведенная выше «американская схема» (дроссель + стартер + люминесцентная лампа) работает от сети переменного тока частотой 50 герц. А если ток постоянный? Ну, например, лампу надо запитать от аккумуляторов. Тут уже электромеханическим вариантом не обойдешься. Нужно «лепить схему». Электронную. И такие схемы были, например в поездах. Мы все ездили в советских вагонах разной степени комфортности и видели там эти люминесцентные трубки. Но они питались постоянным током напряжением в 80 вольт, такое напряжение выдает вагонный аккумулятор. Для питания была разработана «та самая» схема – полумостовой генератор с последовательной резонансной цепью, а для предотвращения бросков тока через спирали ламп введен терморезистор прямого подогрева ТРП-27 с положительным температурным коэффициентом сопротивления. Схема, надо сказать, отличалась исключительной надежностью, а чтобы переделать ее в балласт для сети переменного тока и использовать в быту, нужно было по сути добавить диодный мост, сглаживающий конденсатор и немного пересчитать параметры некоторых деталей и трансформатора. Единственное «но». Такая штуковина получилось бы довольно дорогой. Я думаю, ее стоимость была бы не меньше 60-70 советских рублей, при стоимости дросселя в 3 рубля. В основном, из-за высокой стоимости в СССР мощных высоковольтных транзисторов. И еще эта схема издавала довольно неприятный высокочастотный писк, не всегда, но иногда его можно было услышать, возможно, со временем менялись параметры элементов (подсыхали конденсаторы) и частота работы генератора понижалась.
Схема питания люминесцентных ламп в поездах в хорошем разрешении
![]() |
Дорогие электронные балласты (ЭПРА)
В качестве примера простого «дорогого» балласта можно привести изделие фирмы TOUVE. Он работал в системе освещения аквариума, проще говоря – от него питались две ламы зеленого свечения по 36 ватт. Хозяин балласта сказал мне, что эта штука какая-то особенная, специально разработанная для освещения аквариумов и террариумов. «Экологичная». В чем там экологичность я так и не понял, другое дело что этот «экологический балласт» не работал. Вскрытие и анализ схемы показал, что по сравнению с дешевыми она существенно усложнена, хотя принцип – полумост + запуск через тот самый динистор DB3 + последовательная резонансная цепь – сохранен в полном объеме. Поскольку лампы две, то мы видим два резонансных контура T4C22C2 и T3C23C5. Холодные спирали ламп от броска тока защищают терморезисторы PTS1, PTS2.
Правило! Если вы покупаете экономную лампу или вот электронный балласт, проверьте как включается эта самая лампа. Если мгновенно – балласт дешевый, что бы вам там про него не рассказывали. В более менее нормальных, лампа должна включаться после нажатия кнопки примерно через 0,5 секунд.
Дальше. Входной варистор RV защищает конденсаторы фильтра питания от броска тока. Схема оснащена фильтром питания (обведен красным) – он препятствует попаданию высокочастотных помех в сеть. Корректор коэффициента мощности (Power Factor Correction) обведен зеленым контуром, но в данной схеме он собран на пассивных элементах, что отличает ее от самых дорогих и навороченных, где коррекцией управляет специальная микросхема. Об этой важной проблеме (коррекции коэффициента мощности) мы поговорим в одном из следующих статей. Ну и еще добавлен узел защиты в аномальных режимах – в этом случае прекращается генерация путем замыкания тиристором SCR базы Q1 на землю.
Скажем, дезактивация электродов или нарушение герметичности трубки, приводят к возникновению «открытой схемы» (лампа не зажигается), что сопровождаются значительным ростом напряжения на пусковом конденсаторе и ростом тока балласта на частоте резонанса, ограниченными лишь добротностью контура. Длительная работа в этом режиме ведет к повреждению балласта за счет перегрева транзисторов. Вот в этом случае и должна сработать защита — тиристор SCR замыкает базу Q1 на землю прекращая генерацию.
![]() |
Видно, что данное устройство по размерам гораздо больше чем дешевые балласты, но после ремонта (вылетел один из транзисторов) и восстановления, выяснилось что эти самые транзисторы нагреваются, как мне показалось, сильнее чем надо, примерно до 70 градусов. Почему бы не поставить небольшие радиаторы? Я не утверждаю что транзистор вылетел из-за перегрева, но возможно работа на повышенных температурах (в закрытом корпусе) послужила провоцирующим фактором. В общем, поставил я небольшие радиаторы, благо место есть.
Люминисце́нтный светильник был изобретен в 1930-е годы, как источник света, получил известность и распространение с конца 1950-х.
Его преимущества неоспоримы:
- Долговечность.
- Ремонтопригодност.
- Экономичность.
- Теплый, холодный и цветной оттенок свечения.
Длительный срок службы обеспечивает правильно спроектированное разработчиками устройство пуска и регулировки работы.
Люминисцентный светильник промышленного производстваЛДС (ла́мпа дневного света) намного экономичнее, чем привычная лампочка накаливания, впрочем, аналогичное по мощности светодиодное устройство превосходит по этому показателю люминесцентное.
С течением времени светильник перестает запускаться, мигает, «гудит», одним словом, не выходит в нормальный режим. Нахождение и работа в помещении становятся опасными для зрения человека.
Для исправления ситуации пробуют включить заведомо исправную ЛДС.
Если простая замена не дала положительных результатов, человек, не знающий как устроен люминесце́нтный светильник, заходит в тупик: «Что делать дальше?» Какие запчасти покупать рассмотрим в статье.
Кратко об особенностях работы лампы
ЛДС относится к газоразрядным источникам света низкого внутреннего давления.
Принцип работы заключается в следующем : герметичный стеклянный корпус устройства заполнен инертным газом и парами ртути, давление которых невелико. Внутренние стенки колбы, покрыты люминофором. Под воздействием электрического разряда, возникающего между электродами, ртутный состав газа начинает светиться, генерируя невидимое глазу ультрафиолетовое излучение. Оно, оказывая действие на люминофор, вызывает свечение в видимом диапазоне. Меняя активный состав люминофора, получают холодный или теплый белый и цветной свет.

Мнение эксперта
Алексей Бартош
Задать вопрос экспертуБактерицидные приборы устроены также как ЛДС, но внутренняя поверхность колбы, изготовленной из кварцевого песка, люминофором не покрыта. Ультрафиолет беспрепятственно излучается в окружающее пространство.
Подключение с применением электромагнитного балласта или ЭПРА
Особенности строения не позволяют подключить ЛДС непосредственно в сеть 220 В – работа от такого уровня напряжения невозможна. Для запуска требуется напряжение не ниже 600В.
С помощью электронных схем необходимо последовательно друг за другом обеспечить нужные режимы работы, каждый из которых требует определенного уровня напряжений.
Режимы работы:
- розжиг;
- свечение.
Запуск заключается в подаче импульсов высокого напряжения (до 1 кВ) на электроды, в результате чего между ними возникает разряд.
Отдельные виды пускорегулирующей аппаратуры, перед тем как произвести пуск, нагревают спираль электродов. Накаливание помогает легче запустить разряд, нить при этом меньше перегревается и дольше служит.
После того как светильник загорелся, питание производится переменным напряжением, включается энергосберегающий режим.


В устройствах, выпускаемых промышленностью, используются два вида пускорегулирующей аппаратуры (ПРА):
- электромагнитный пускорегулирующий аппарат ЭмПРА;
- электронный пускорегулирующий аппарат – ЭПРА.
Схемы предусматривают различное подключение, оно представлено ниже.
Схема с ЭмПРА

В состав электрической схемы светильника с электромагнитной пускорегулирующей аппаратурой (ЭмПРА) входят элементы:
- дроссель;
- стартер;
- компенсирующий конденсатор;
- люминесцентная лампа.

В момент подачи питания через цепь: дроссель – электроды ЛДС, на контактах стартера появляется напряжения.
Биметаллические контакты стартера, находящиеся в газовой среде, нагреваясь, замыкаются. Из-за этого в цепи светильника создается замкнутый контур: контакт 220 В – дроссель – электроды стартера – электроды лампы – контакт 220 В.
Нити электродов, разогреваясь, испускают электроны, которые создают тлеющий разряд. Часть тока начинает течь по цепи: 220В – дроссель – 1-й электрод – 2-й электрод – 220 В. Ток в стартере падает, биметаллические контакты размыкаются. По законам физики в этот момент возникает ЭДС самоиндукции на контактах дросселя, что приводит к возникновению высоковольтного импульса на электродах. Происходит пробой газовой среды, возникает электрическая дуга между противоположными электродами. ЛДС начинает светиться ровным светом.
В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды.
Дроссель, подключенный в цепь переменного тока, работает как индуктивное сопротивление, снижая до 30 % коэффициент полезного действия светильника.
Внимание! С целью уменьшения потерь энергии в схему включают компенсирующий конденсатор, без него светильник будет работать, но электропотребление увеличится.
Схема с ЭПРА
Внимание! В рознице ЭПРА часто встречаются под наименованием электронный балласт. Название драйвер продавцы применяют для обозначения блоков питания для светодиодных лент.

Внешний вид и устройство электронного балласта, предназначенного для включения двух ламп, мощностью 36 ватт каждая.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуВажно! Запрещено включать ЭПРА без нагрузки в виде люминесцентных ламп. Если устройство предназначено для подключения двух ЛДС, нельзя использовать его в схеме с одной.
В схемах с ЭПРА физические процессы остаются прежними. В некоторых моделях предусмотрено предварительное нагревание электродов, что увеличивает срок службы лампы.

На рисунке показан внешний вид ЭПРА для различных по мощности устройств.
Размеры позволяют разместить ЭПРА даже в цоколе Е27.

Компактные ЭСЛ – один из видов люминесцентных могут иметь цоколь g23.


На рисунке представлена упрощенная функциональная схема ЭПРА.
Схема для последовательного подключения двух ламп
Существуют светильники, конструктивно предусматривающие подключение двух ламп.
В случае замены деталей сборка осуществляется по схемам, различным для ЭмПРА и ЭПРА.
Внимание! Принципиальные схемы ПРА рассчитаны на работу с определенной мощностью нагрузки. Этот показатель всегда имеется в паспортах изделий. Если подсоединить лампы большего номинала, дроссель или балласт могут перегореть.

Если на корпусе прибора есть надпись 2Х18 – балласт предназначен для подключения двух ламп мощностью по 18 ватт каждая. 1Х36 – такой дроссель или балласт способен включать одну ЛДС мощностью 36 Вт.
В случаях, когда используется дроссель, лампы должны подключаться последовательно.
Запускать их свечение будут два стартера. Подсоединение этих деталей осуществляется параллельно с ЛДС.
Подключение без стартера
Схема ЭПРА в своем составе стартера не имеет изначально.

Однако и в схемах с дросселем можно обойтись без него. Собрать рабочую схему поможет включенный последовательно подпружиненный выключатель – проще говоря, кнопка. Кратковременное включение и отпускание кнопки обеспечит соединение похожее по действию на стартерный пуск.
Важно! Включаться такой безстартерный вариант будет, только при целых нитях накаливания.
Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами. Один из них показан ниже.

Схемы для подключения ЛДС
Для подключения обычных ламп дневного света существует несколько схем. При их применении необходимо обращать внимание на суммарную мощность нагрузки (особенно при подборе дросселей-балластов) и напряжения на отдельных элементах (особенно стартерах - стартеры выпускаются двух типов: полное напряжение (220В) и половинное)
В некоторых дросселях-балластах имеется первичная коммутация проводников В связи с этим схема подключения ЛДС может немного измениться. Поможет в этом схема на корпусе пуско-регулирующего устройства.
Большинство схем с применением ЛДС имеет на входе конденсатор-фильтр для защиты потребителей от помех (импульсов) при включении-выключении приборов.
- Подключение лампы дневного света.
- подключение ЛДС
- подключение люминесцентных ламп.
- Схемы с конденсатором
- Современные схемы подключения люминесцентных ламп дневного света
- схемы подключения ЛДС
1. Самая простая схема для подключения одиночной лампы дневного света . При использовании одиночных ламп возможно мерцание света лампы, что неблагоприятно сказывается на восприятии света. В этом случае следует отдавать предпочтение современным электронным схемам пуско-регулирующих устройств (ПРА). Там же могут быть указаны предельные мощности нагрузки на данный прибор.
2. В светильниках с применением ЛДС обычно используют парное количество ламп (2 или 4). В них эффект мерцания света менее заметен.
При этом сами трубки ламп соединяются парами последовательно или параллельно. В одной из веток может ставиться фазосдвигающий конденсатор для уменьшения общего мерцания - лампы мерцают поочередно и суммарно имеем более стабильное свечение.
а) Последовательная схема. (на стартерах половинное напряжение - тип S2).
б) Параллельная схема. (на стартерах полное напряжение 220В)
в)Параллельная схема с фазосдвигающим конденсатором.
г) Современные схемы. В современных люминесцентных светильниках применяют бездроссельную и безстартерную схему. Эти устройства заменяет электронная схема (электронный балласт), обеспечивающая надежный пуск и стабильную работу ЛДС.
Промышленность выпускает два вида электронных устройств для пуска и работы люминесцентных ламп:
В пластиковом корпусе из которого выходят подсоединительные проводники.Схема подключения обычно нарисована на корпусе прибора.
Сама электронная плата без защитного корпуса, вставляемая в специальные держатель. В момент написания статьи его размеры близки к размерам спичечного коробка. При обслуживании такой электронной платы следует обратить внимание на состояние защитного лакового покрытия. Оно легко разрушается при вытягивании из держателей. При последующей установке назад возможно замыкание элементами крепления участков платы и выхода ее из строя. Можно кромку платы обвернуть изолентой в месте упора держателей.
Эти же схемы применяют и в настольных люминесцентных лампах.
Анализ поисковых запросов показывает, что часть пользователей интересуется люминесцентными светильниками. Применяются обычно светильники из двух или .
На данный момент могу проинформировать о наличии электронного балласта для светильника из 4-х ламп по 18 Вт. Вскрытие корпуса показало, что в нем применена схема аналогичная для ламп-экономок. На одной плате смонтировано две схемы для подключения двух ЛДС каждая..
На мой взгляд экономичнее в плане ремонта использовать 2 отдельных балласта (другого типа) по одному на две лампы. В первом случае при поломке придется менять весь прибор, а во втором две лампы будут работать.
д) Редкие схемы. В некоторых случаях применяют бездроссельную схему с уможителем напряжения. Поскольку для розжига ЛДС необходимо напряжение несколько большее 220В, в этой схеме имеется умножитель напряжения (4 диода и 2 конденсатора), обеспечивающий стабильное включение и работу лампы даже с перегоревшей нитью разогрева (она здесь просто не нужна). Параметры электронных компонентов не указаны (схема интересна только отдельным энтузиастам)- их легко можно найти при надобности на других сайтах. Диоды и конденсаторы в принципе легкопокупаемые на радиорынках, а вот с резистором (довольно большая мощность) могут быть проблемы в наличии.
Есть и другие варианты схем питания ЛДС (Н.П. постоянным током и др.), но практического применения они не имеют. При питании постоянным током на колбе лампы со временем образуется темная область (пятно), уменьшающая силу света. Высоковольтные схемы питания ЛДС приводят к быстрому износу электродов лампы.
На практике нестандартные схемы включения ЛДС никакого выигрыша во время эксплуатации НЕ ДАЮТ и интересны только для одиночных любителей попробовать свои силы.
Некоторые особеннности в работе люминесцентных ламп.
Мигание лампы, лампа не может включиться - для устранения сначала поменять стартер, если не поможет - поменять лампу, проверить напряжение в сети.
Мерцание люминесентной лампы в т.ч. и компактной экономки даже в выключенном состоянии - чаще всего встречается если выключатель установлен на нулевом проводе.
Мне понравилась фраза - лампы накаливания - это вчерашний день, лампы дневного света - сегодняшний, а полупроводниковые (LED) - завтрашний день. Электрическая проводка делается на будущее. Перетереть стены, потолок, поменять обои - данные работы делаются чаще чем замена электропроводки. Электропроводку следует делать с ориентацией на завтрашний день.
Также после 2015 года поставки люминесцентных ламп на Украину будут прекращаться. Идет переход на светодиодные источники света. Сейчас в продаже имеются практически все типы ламп (по внешнему виду) для замены устаревших источников света (ламп накаливания, люминесцентных) на современные светодиодные (LED). При установке светодиодных аналогов необходимо переделать схему подключения в самом светильнике. Фактически выбросить дросселя, стартеры, Оставляем только подсоединительные элементы (цокольный патрон, держатель), в которые вставляется (вкручивается) современня LED лампа. Светодиодные аналоги ламп подключаются напрямую в сеть 220В. Необходимые вспомогательные элементы находятся внутри самих приборов.
Предлагаем два варианта подключения люминисцентных ламп, без использования дросселя.
Вариант 1.
Все люминесцентные светильники, работающие от сети переменного тока (кроме светильников с высокочастотными преобразователями), излучают пульсирующий (с частотой 100 пульсаций в секунду) световой поток. Это действует утомляюще на зрение людей, искажает восприятие вращающихся узлов в механизмах.
Предлагаемый светильник собран по общеизвестной схеме электропитания люминесцентной лампы выпрямленным током, отличающейся введением в нее конденсатора большой емкости марки К50-7 для сглаживания пульсаций.
При нажатии на общую клавишу (см. схему 1) срабатывает кнопочный выключатель 5В1, подсоединяющий светильник к электросети, и кнопка 5В2, замыкающая своими контактами цепь накала люминесцентной лампы ЛД40. При отпускании клавиш выключатель 5В1 остается включенным, а кнопка SВ2 размыкает свои контакты, и от возникающей ЭДС самоиндукции лампа зажигается. При вторичном нажатии на клавишу выключатель SВ1 размыкает свои контакты, и светильник гаснет.
Описание включающего устройства не привожу из-за его простоты. Для равномерного износа нитей накала лампы полярность ее включения следует менять примерно через 6000 часов работы.Световой поток, излучаемый светильником, практически не имеет пульсаций.
Схема 1. Подключения люминисцентной лампы с перегоревшей нитью (вариант 1.)
В таком светильнике можно применять даже лампы с одной перегоревшей нитью.
Для этого ее выводы замыкают на цоколе пружинкой из тонкой стальной струны, и лампа вставляется в светильник так, чтобы на замкнутые ножки поступал «плюс» выпрямленного напряжения (верхняя нить на схеме).
Вместо конденсатора марки КСО-12 на 10000 пф, 1000 В может быть использован конденсатор из вышедшего из строя стартера для ЛДС.
Вариант 2.
Основная причина выхода из строя люминесцентных ламп та же, что и ламп накаливания — перегорание нити накала. Для стандартного светильника люминесцентная лампа с такого рода неисправностью, конечно же, непригодна, и ее приходится выбрасывать. Между тем по другим параметрам ресурс лампы с перегоревшей нитью накала часто остается далеко не выработанным.
Одним из способов «реанимации» люминесцентных ламп является применение холодного (мгновенного) зажигания. Для этого хотя бы один из катодов должен об-
ладать эмиссионной активностью (см. схему, реализующую указанный способ).
Устройство представляет собой диодно-конденсаторный умножитель с кратностью 4(см.схему 2). Нагрузкой служит цепь из последовательно соединенных газоразрядной лампы и лампы накаливания. Их мощности одинаковы (40 Вт), номинальные напряжения питания также близки по величине (соответственно 103 и 127 В). Вначале при подаче переменного напряжения сети 220 В устройство работает как умножитель. В результате к лампе оказывается приложенным высокое напряжение, которое и обеспечивает «холодное» зажигание.
Схема 2. Еще один вариант подключения люминисцентной лампы с перегоревшей нитью.
После возникновения устойчивого тлеющего разряда устройство переходит в режим двухполупериодного выпрямителя, нагруженного активным сопротивлением. Эффективное напряжение на выходе мостовой схемы практически равно сетевому. Оно распределяется между лампами Е1.1 и Е1.2. Лампа накаливания выполняет функцию токоограничивающего резистора (балласта) и вместе с тем она используется как осветительная, что повышает КПД установки.
Заметим, что люминесцентная лампа представляет фактически своего рода мощный стабилитрон, так что изменения величины питающего напряжения сказываются главным образом на свечении (яркости) лампы накаливания. Поэтому, когда напряжение сети отличается повышенной нестабильностью, лампу Е1_2 нужно взять мощностью 100 Вт на напряжение 220 В.
Совместное применение двух разнотипных источников света, взаимодополняющих друг друга, приводит к улучшению светотехнических характеристик: уменьшаются пульсации светового потока, спектральный состав излучения ближе к естественному.
Устройство не исключает возможности использования в качестве балласта и типового дросселя. Его включают последовательно на входе диодного моста, например, в разрыв цепи вместо предохранителя. При замене диодов Д226 на более мощные — серии КД202 или блоки КД205 и КЦ402 (КЦ405) умножитель позволяет питать люминесцентные лампы мощностью 65 и 80 Вт.
Правильно собранное устройство не требует наладки. В случае нечеткого зажигания тлеющего разряда либо при отсутствии такового вообще при номинальном сетевом напряжении следует изменить полярность подсоединения люминесцентной лампы. Предварительно необходимо произвести отбор перегоревших ламп для выявления возможности работать в данном светильнике.
С повышением цен на электроэнергию, приходится задумываться о более экономных светильниках. Одни из таких используют осветительные приборы дневного света. Схема подключения люминесцентных ламп не слишком сложна, так что даже без особых знаний электротехники можно разобраться.
Хорошая освещенность и линейные размеры — преимущества дневного света
Принцип работы люминесцентного светильника
В светильниках дневного света использована способность паров ртути излучать инфракрасные волны под воздействием электричества. В видимый для нашего глаза диапазон, это излучение переводят вещества-люминофоры.
Потому обычная люминесцентная лампа представляет собой стеклянную колбу, стенки которой покрыты люминофором. Внутри также находится некоторое количество ртути. Имеются два вольфрамовых электрода, обеспечивающих эмиссию электронов и разогрев (испарение) ртути. Колба заполнена инертным газом, чаще всего — аргоном. Свечение начинается при наличии паров ртути, разогретых до определенной температуры.
Но для испарения ртути обычного напряжения сети недостаточно. Для начала работы параллельно с электродами включают пуско-регулирующие устройства (сокращенно ПРА). Их задача — создать кратковременный скачок напряжения, необходимый для начала свечения, а затем ограничивать рабочий ток, не допуская его неконтролируемого возрастания. Эти устройства — ПРА — бывают двух видов — электромагнитные и электронные. Соответственно, схемы отличаются.
Схемы со стартером
Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.
Схема подключения люминесцентных ламп со стартером
Вот как она работает:
- При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
- Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
- Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
- За счет резкого скачка очень быстро разогреваются электроды.
- Биметаллическая пластина стартера остывает и разрывает контакт.
- В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.
Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.
Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА. Часто это устройство называют просто дросселем.
Один из ЭмПРА
Недостатков у этой схемы подключения люминесцентной лампы достаточно:
- пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
- шумы при пуске и работе;
- невозможность запуска при пониженной температуре;
- длительный старт — от момента включения проходит порядка 1-3 секунд.
Две трубки и два дроссели
В светильниках на две лампы дневного света два комплекта подключаются последовательно:
- фазный провод подается на вход дросселя;
- с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
- со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);
Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.
Схема подключения на две лампы дневного света
Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.
Схема подключения двух ламп от одного дросселя (с двумя стартерами)
Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.
Электронный балласт
Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.
Один из электронных балластов — ЭПРА
Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.
На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:
- первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
- третий и четвертый подаете на другую пару;
- ко входу подаете питание.
Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).
Преимущества электронных балластников описаны в видео.
Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.