Разделение сигналов. Фазовое разделение сигналов

Разделение сигналов. Фазовое разделение сигналов

Если рассмотреть простейшую сеть, состоящую из двух пунктов А и Б, между которыми организовано N цифровых каналов (здесь не оговаривается каким образом), то независимая передача сигналов по этим каналам возможна, если эти каналы разделены между собой. Возможны следующие способы разделения каналов между двумя пунктами:

Пространственное разделение (space division), использующее различные передающие среды для организации каналов;

Временное разделение (time division), осуществляющее передачу цифровых сигналов в разные временные интервалы в различных каналах;

Кодовое разделение (code division), при котором разделение происходит путем приме­нения конкретных значений кодов для каждого сигнала;

Разделение по длине волны, при котором цифровые сигналы передаются по цифро­вым каналам, организованным на различных длинах волн в оптическом кабеле;

Разделение по моде при организации канала на различных типах электромагнитной волны (модах) полых волноводов и оптического кабеля;

Разделение по поляризации электромагнитной волны полых волноводов и оптическо­го кабеля.

Во всех случаях разделение каналов между двумя узлами не предполагает наличие еди­ной среды распространения электромагнитного сигнала. Для передачи сигналов в одной среде распространения разделенные по тому или иному признаку (кроме пространственно­го) каналы с помощью операции объединения (мультиплексирования) группируются, обра­зуя цифровую систему передачи (ЦСП).

В цифровых системах коммутации (ЦСК) такое объединение и разделение сигналов чаще всего происходит с помощью временного мультиплексирования (time division multi­plexing). Временное мультиплексирование в настоящее время является важной составной частью не только ЦСП, но и ЦСК, и играет определяющую роль особенно на стыке этих систем. В телефонии временное мультиплексирование определяется как инструмент для распределения (разделения и объединения) телефонных каналов во времени при передаче по одной физической линии связи. При этом используется один из видов импульсной моду­ляции. Каждый импульс соответствует сигналу одного из каналов, сигналы от разных кана­лов передаются последовательно.

Принцип временного объединения сигналов показан на рис. 1.8, где изображен вращающийся коммутатор К (в центре), попеременно подключающийся к выходам по­следовательности каналов. К выходу канала 1 коммутатор подключается в момент времени t, к выходу канала 2 в момент времени t 2 , к выходу канала N в момент времени t N , после чего процесс повторяется. Результирующий вы­ходной сигнал будет состоять из последовательности сиг­налов разных каналов, смещенных друг относительно друга на время At.

Разделение сигналов на приемной стороне будет про­исходить аналогично: вращающийся коммутатор пооче­редно подключается к каналам, передавая первый сигнал в канал номер 1, второй - в канал номер 2 и т.д. Очевид­но, что работа коммутаторов на приемной и передающей стороне должна определенным образом синхронизиро­ваться, чтобы сигналы, пришедшие по линии, направля­лись в необходимые каналы. На рис. 1.9 представлены временные диаграммы для случая объединения трех ка­налов, по которым передаются амплитудно - импульсно модулированные сигналы.

Как указывалось выше, в ЦСП используются ИКМ сигналы, представляющие собой цифровые кодовые по­следовательности, состоящие из нескольких бит.

Времен­ное объединение нескольких ИКМ сигналов - это объеди­нение кодовых последовательностей, поступающих от различных источников, для совместной передачи по об­щей линии, при котором линия в каждый момент времени предоставляется для передачи только одной из поступив­ших кодовых последовательностей.

Временное объединение ИКМ сигналов характеризу­ется рядом параметров. Цикл временного объединения есть совокупность следующих друг за другом интервалов времени, отведенных для передачи ИКМ сигналов, по­ступающих от различных источников. В цикле временно­го объединения каждому ИКМ сигналу выделен кон­кретный интервал времени, положение которого может быть определено однозначно. Поскольку обычно каждый сигнал соответствует своему каналу передачи, то такой интервал времени, отведенный для передачи одного кана­ла, называют канальным интервалом (КИ). Выделяют два типа цикла - основной, продолжительность которого рав­на периоду дискретизации сигнала, и сверхцикл - повто­ряющаяся последовательность следующих друг за другом основных циклов, в которой положение каждого из них определяется однозначно.

Рис. 1.8. Круговая интерпретация временного мультиплексирования

Рис. 1.9. Временное объединение

При построении ИКМ аппаратуры используют однородное временное объединение ИКМ сигналов, при котором скорости передачи кодовых слов объединяемых ИКМ сигналов одинаковы. Это дает возможность производить погрупповое объединение ИКМ сигналов и строить на основе этого иерархические системы передачи ИКМ сигналов.

Кодовое разделение и демодуляция сигналов в системах радиосвязи


1. ПРИНЦИП РАБОТЫ СИСТЕМ РАДИОСВЯЗИ С КОДОВЫМ РАЗДЕЛЕНИЕМ СИГНАЛОВ

Принцип работы системы сотовой связи с кодовым разделением каналов можно пояснить на таком простом примере. Предположим, что вы находитесь в большом ресторане или магазине, где непрерывно разговаривают на разных языках. Несмотря на окружающий шум (многоголосье), вы понимаете своего партнера, если он говорит на одном с вами языке. На самом деле, в отличие от других цифровых систем, которые делят отведенный диапазон на узкие каналы по частотному (FDMA) или временному (TDMA) признаку, в стандарте CDMA передаваемую информацию кодируют и код превращают в шумоподобный широкополосный сигнал так, что его можно выделить снова, только располагая кодом на приемной стороне. При этом одновременно в широкой полосе частот можно передавать и принимать множество сигналов, которые не мешают друг другу. Центральными понятиями метода многостанционного доступа с кодовым разделением каналов в реализации компании Oualcomm являются расширение спектра методом прямой последовательности (Direct Sequence Spread Spectrum), кодирование по Уолшу (Walsh Coding) и управление мощностью.

Широкополосной называется система, которая передает сигнал, занимающий очень широкую полосу частот, значительно превосходящую ту минимальную ширину полосы частот, которая фактически требуется для передачи информации. Так например, низкочастотный сигнал может быть передан с помощью амплитудной модуляции (AM) в полосе частот, в 2 раза превосходящей полосу частот этого сигнала. Другие виды модуляции, такие как частотная модуляция (ЧМ) с малой девиацией и однополосная AM, позволяют осуществить передачу информации в полосе частот, сравнимой с полосой частот информационного сигнала. В широкополосной системе исходный модулирующий сигнал (например, сигнал телефонного канала) с полосой всего несколько килогерц распределяют в полосе частот, ширина которой может быть несколько мегагерц. Последнее осуществляется путем двойной модуляции несущей передаваемым информационным сигналом и широкополосным кодирующим сигналом.

Основной характеристикой широкополосного сигнала является его база В, определяемая как произведение ширины спектра сигнала F на его период Т.

В результате перемножения сигнала источника псевдослучайного шума с информационным сигналом энергия последнего распределяется в широкой полосе частот, т. е. его спектр расширяется.

Метод широкополосной передачи был открыт К.Е, Шенноном, который первым ввел понятие пропускной способности канала и установил связь между возможностью осуществления безошибочной передачи информации по каналу с заданным отношением сигнал/шум и полосой частот, отведенной для передачи информации. Для любого заданного отношения сигнал/шум малая частота ошибок при передаче достигается при увеличении полосы частот, отводимой для передачи информации.

Следует отметить, что сама информация может быть введена в широкополосный сигнал несколькими способами. Наиболее известный способ заключается в наложении информации на широкополосную модулирующую кодовую последовательность перед модуляцией несущей для получения широкополосного шумоподобного сигнала ШПС (рис. 1).

Узкополосный сигнал умножается на псевдослучайную последовательность (ПСП) с периодом Т, состоящую из N бит длительностью r 0 каждый. В этом случае база ШПС численно равна количеству элементов ПСП.


Этот способ пригоден для любой широкополосной системы, в которой для расширения спектра высокочастотного сигнала применяется цифровая последовательность.

Сущность широкополосной связи состоит в расширении полосы частот сигнала, передаче широкополосного сигнала и выделении из него полезного сигнала путем преобразования спектра принятого широкополосного сигнала в первоначальный спектр информационного сигнала.

Перемножение принятого сигнала и сигнала такого же источника псевдослучайного шума (ПСП), который использовался в передатчике, сжимает спектр полезного сигнала и одновременно расширяет спектр фонового шума и других источников интерференционных помех. Результирующий выигрыш в отношении сигнал/шум на выходе приемника есть функция отношения ширины полос широкополосного и базового сигналов: чем больше расширение спектра, тем больше выигрыш. Во временной области - это функция отношения скорости передачи цифрового потока в радиоканале к скорости передачи базового информационного сигнала. Для стандарта IS-95 отношение составляет 128 раз, или 21 дБ. Это позволяет системе работать при уровне интерференционных помех, превышающих уровень полезного сигнала на 18 дБ, так как обработка сигнала на выходе приемника требует превышения уровня сигнала над уровнем помех всего на 3 дБ. В реальных условиях уровень помех значительно меньше. Кроме того, расширение спектра сигнала (до 1,23 МГц) можно рассматривать как применение методов частотного разнесения приема. Сигнал при распространении в радиотракте подвергается замираниям вследствие многолучевого характера распространения. В частотной области это явление можно представить как воздействие режекторного фильтра с изменяющейся шириной полосы режекции (обычно не более чем на 300 кГц). В стандарте AMPS это соответствует подавлению десяти каналов, а в системе CDMA подавляется лишь около 25% спектра сигнала, что не вызывает особых затруднений при восстановлении сигнала в приемнике.

2. ИСПОЛЬЗОВАНИЕ СОГЛАСОВАННЫХ ФИЛЬТРОВ ДЛЯ ДЕМОДУЛЯЦИИ СЛОЖНЫХ СИГНАЛОВ

Составные сигналы, используемые в системах с кодовым разделением каналов, помимо большой базы, характеризуются большой избыточностью, поскольку все элементарные сигналы, служащие для передачи одного символа двоичного кода, переносят одну и ту же информацию.

Прием этих сигналов, как и прием любых сигналов с избыточностью, можно осуществлять поэлементно или в целом. Для систем, где применяются ШПС, характерен прием в целом. Только при обработке составного сигнала в целом возможно, в частности, осуществить раздельный прием лучей при многолучевом распространении и реализовать полностью другие преимущества связи посредством ШПС.

Прием ШПС, как, впрочем, и любых других сигналов осуществляется с помощью оптимальных приемников, минимизирующих вероятность ошибки. Известно, что структура оптимального приемника зависит от вида модуляции, а также от того, какое количество параметров сигнала известно в точке приема (когерентный или некогерентный прием и т.п.). Однако в любом случае в состав оптимального приемника входит коррелятор или согласованный фильтр и решающее устройство. Рассмотрим использование СФ для приема фазоманипулированных шумоподобных сигналов ФМШПС (рис.2), являющихся широко распространенной разновидностью сложных сигналов.

Согласованный фильтр (рис.2) согласован с ШПС, который переносит информацию.

Если использовать ШПС Uk(t), то импульсная реакция СФ

где а - некоторая постоянная; Т - длительность ШПС.

Допустим, что для передачи "1" информационной последовательности используется сигнал Uk(t), а для передачи "О" используется противоположный сигнал -Uk(t) (передача (активной паузой).

В качестве ШПС выберем код Баркера (Nэ=7). Тогда

Форма сигнала Uk(t) показана на рис.3. Согласованные фильтры могут быть аналоговыми и дискретными. Многочастотные ШПС обрабатываются в многоканальных СФ, а для составных сигналов типа ФМШПС используют СФ, которые строятся на основе многоотводной линии задержки (МЛЗ). В качестве МЛЗ применяют отрезки коаксиального кабеля, ультразвуковые линии задержки с использованием поверхностных акустических волн (ПАВ). Известны также дискретно-аналоговые СФ на приборах с зарядовой связью (ПЗС). Полоса пропускания МЛЗ должна быть не меньше ширины спектра ШПС.


Если в дискретном СФ отсчеты преобразовать с помощью АЦП в кодовые группы, то фильтр превращается в цифровой СФ. Для реализации цифровых СФ предполагается использовать специализированные большие и сверхбольшие интегральные микросхемы (БИС и СБИС). Согласованный фильтр обладает свойством инвариантности относительно амплитуды, временного положения и начальной фазы сигнала.

На рис.3 представлен аналоговый линейный СФ на МЛЗ. Вследствие показанному на рис.3 включению фазовращателей (ФВ) такой фильтр согласован с кодовой последовательностью Бартера (N Э =7).


Подобный метод приема можно использовать тогда, когда известны форма сигнала Uk(t), момент начала и окончания интервала и несущая частота ВЧ колебания. Неизвестна только начальная фаза несущей, но она одинакова у всех элементов составного сигнала (рис.2). В этом случае говорят о некогерентном приеме с когерентным накоплением. Некогерентность приема связана с тем, что на вход стробирующего устройства СУ подается не сам сигнал, а его огибающая. Таким образом, СФ реализует оптимальный метод приема известного сигнала с неопределенной фазой.

На рис.4,а показано напряжение на выходе СФ Ucф(t), которое повторяет в масштабе реального времени автокорреляционную функцию ШПС, с которым согласован фильтр. Сравнение рис.2 с рис.4,а позволяет убедиться в том, что СФ оказывает значительное влияние на ШПС, и отклик фильтра, повторяя АКФ сигнала, мало похож на сам сигнал, действующий на входе СФ.

На рис.4, 6 представлено напряжение на выходе детектора огибающей.

Линия связи - наиболее дорогостоящий элемент системы свя­зи. Поэтому целесообразно по ней вести многоканальную передачу информации, так как с ростом числа каналов N увеличивается ее пропускная способность С. Поичем. должно выполняться условие:

Н К - производительность к-го канала.

Основная проблема многоканальной передачи - разделение ка­нальных сигналов на приемной стороне. Сформулируем условия этого разделения.

Пусть необходимо организовать одновременную передачу несколь­ких сообщений по общему (групповому) каналу, каждое из которых описывается выражением

(7.1.1)



С учетом формулы (7.1.1.) получаем:

Иначе говоря, приемник обладает избирательными свойствами по от­ношению к сигналу Sk(t).

Рассматривая вопрос разделения сигналов различают частотное, фазовое, вре­менное разделение каналов, а также разделение сигналов по форме и другим признакам.

Второй учебный вопрос

Частотное разделение каналов

Структурная схема многоканальной системы связи (МКС) с час­тотным разделением каналов (ЧРК) приведена на рис.7.1.1, где обо­значено: ИС - источник сигнала, Мi - модулятор, Фi - фильтр i-го канала, Σ - сумматор сигналов, ГН - генератор несущей, ПРД- пе­редатчик, ЛС - линия связи, ИП - источник помех, ПРМ - прием­ник, Д - детектор, ПС - получатель сообщения.


Рис.7.1.1. Структурная схема многоканальной системы связи

При ЧРК сигналы-переносчики имеют различные частоты fi (поднесущие) и разнесены на интервал, больший или равный ширине спектра модулированного канального сигнала. Поэтому модулирован­ные канальные сигналы занимают неперекрывающиеся полосы час­тот и являются ортогональными между собой. Последние суммируют­ся (уплотняются по частоте) в блоке Σ образуя групповой сигнал, которым модулируется колебание основной несущей частоты fн в блоке М.

Для модуляции канальных переносчиков можно применять все известные способы. Но более экономично полоса частот линии связи используется при однополосной модуляции (ОБП AM), так как в этом случае ширина спектра модулированного сигнала минимальна и равна ширине спектра передаваемого сообщения. Во второй ступени моду­ляции (групповым сигналом) чаще также используется ОБП AM в проводных каналах связи.

Такой сигнал с двойной модуляцией, после усиления в блоке ПРД передается по линии связи в приемник ПРМ, где подвергается обратному процессу преобразования, т. е. демодуля­ции сигнала по несущей в блоке Д для получения группового сигнала, выделения из него канальных сигналов полосовыми фильтрами Фi и демодуляции последних в блоках Дi. Центральные частоты полосовых фильтров Фi равны частотам канальных переносчиков, а их полосы прозрачности - ширине спектра модулированных сигналов. Откло­нение реальных характеристик полосовых фильтров от идеальных не должно влиять на качество разделения сигналов, поэтому используют защитные интервалы частот между каналами. Каждый из фильтров Ф приема должен пропускать без ослабления лишь те частоты, которые принадлежат сигналу данного канала. Частоты сигналов всех других каналов фильтр должен подавить.


Частотное разделение сигналов идеальными полосовыми фильтра­ми математически можно представить так:

где g k - импульсная реакция идеального полосового фильтра, пропускаю­щего без искажений полосу частот к-го канала.

Основные достоинства ЧРК : простота технической реализации, высокая помехоустойчивость, возможность организации любого числа каналов. Недостатки: неизбежное расширение используемой полосы частот при увеличении числа каналов, относительно низкая эффек­тивность использования полосы частот линии связи из-за потерь на расфильтровку; громоздкость и высокая стоимость аппаратуры, обу­словленные в основном большим числом фильтров (стоимость фильт­ров достигает 40 % стоимости системы с ЧРК). На железнодорожном транспорте разработана МКС с ЧРК типа К-24Т, в которой исполь­зуются малогабаритные электромеханические фильтры.

Третий учебный вопрос

В системах телемеханики для передачи многих сигналов по одной линии связи применение обычного кодирования показывается недостаточным. Необходимо либо дополнительное разделение сигналов, либо специальное кодирование, которое включает в себя элементы разделения сигналов. Разделение сигналов - обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при котором сигналы сохраняют свои свойства и не искажают друг друга.

Сейчас применяются следующие способы:

1. Временное разделение, при котором сигналы передаются последовательно во времени, поочередно используя одну и ту же полосу частот;

2. Кодово-адресное разделение, осуществляемое на базе временного (реже частотного) разделение сигналов с посылкой кода адреса;

3. Частотное разделение, при котором каждому из сигналов присваивается своя частота и сигналы передаются последовательно или параллельно во времени;

4. Частотно-временное разделение, позволяющее использовать преимущества как частотного, так и временного разделения сигналов;

5. Фазовое разделение, при котором сигналы отличаются друг от друга фазой.

Временное разделение (ВР). Каждому из n - сигналов линия предоставляется поочередно: сначала за промежуток времени t 1 передается сигнал 1, за t 2 - сигнал 2 и т.д. При этом каждый сигнал занимает свой временной интервал. Время, которое отводится для передачи всех сигналов, называется циклом. Полоса частот для передачи сигналов определяется самым коротким импульсом в кодовой комбинации. Между информационными временными интервалами необходимы защитные временные интервалы во избежание взаимного влияния канала на канал т.е. проходных искажений.

Для осуществления временного разделения используют распределители, один из которых устанавливают на пункте управления, а другой - на исполнительном пункте.

Кодово - адресное разделение сигналов (КАР). Используют временное кодово-адресное разделение сигналов (ВКАР), при этом сначала передается синхронизирующий импульс или кодовая комбинация (синхрокомбинация) для обеспечения согласованной работы распределителей на пункте управления и контролируемом пункте. Далее посылается кодовая комбинация, называемая кодом адреса. Первые символы кода адреса предназначены для выбора контролируемого пункта и объекта, последние образуют адрес функции, в котором указывается, какая ТМ - операция (функция) должна выполняться (ТУ, ТИ и т.п.). После этого следует кодовая комбинация самой операции, т.е. передается командная информация или принимается известительная информация.

Частотное разделение сигналов. Для каждого из n - сигналов выдается своя полоса в частотном диапазоне. На приемном пункте (КП) каждый из посланных сигналов выделяется сначала полосовым фильтром, затем подается на демодулятор, затем на исполнительные реле. Можно передавать сигналы последовательно или одновременно, т.е. параллельно.

Фазовое разделение сигналов. На одной частоте передается несколько сигналов в виде радиоимпульсов с различными начальными фазами. Для этого используется относительная или фазорастностная манипуляция.

Частотно-временное разделение сигналов. Заштрихованные квадраты с номерами - это сигналы, передаваемые в определенной полосе частот и в выделенном интервале времени. Между сигналами имеются защитные временные интервалы и полосы частот. Число образуемых сигналов при этом значительно увеличивается.

24. Основные виды помех в каналах и трактах проводных МСП(многоканальной системы передачи) с ЧРК(частотным разделением каналов).

Под помехой будем понимать всякое случайное воздействие на сигнал в канале связи, препятствующее правильному приему сигналов. При этом следует подчеркнуть случайный характер воздействия, так как борьба с регулярными помехами не представляет затруднений (во всяком случае, теоретически). Так например, фон переменного тока или помеха от определенной радиостанции могут быть устранены компенсацией или фильтрацией. В каналах связи действуют как аддитивные помехи, т. е. случайные процессы, налагающиеся на передаваемые сигналы, так и мультипликативные помехи, выражающиеся в случайных изменениях характеристик канала.

На выходе непрерывного канала всегда действуют гауссовские помехи. К таким помехам, в частности, относится тепловой шум. Эти помехи неустранимы. Модель непрерывного канала, вклю­чающая в себя закон композиции сигнала s(t), четырёхполюсник с импульсной характеристикой g(t, ) и источник аддитивных гауссовских помех (t).

Более полная модель должна учитывать другие типы аддитивных (аддитивные – суммарные) помех, нелинейные искажения сигнала, а также мультипликативные помехи.

Перейдем к краткой характеристике перечисленных выше помех.

Сосредоточенные по спектру, или гармонические, помехи представляют собой узкополосный модулированный сигнал. Причинами возникновения таких помех являются снижение переходного затухания между цепями кабеля, влияние радиостанций и т. п.

Импульсные помехи - это помехи, сосредоточенные по времени. Они представляют собой случайную последовательность импульсов, имеющих случайные амплитуды и следующих друг за другом через случайные интервалы времени, причем вызванные ими переходные процессы не перекрываются во времени. Причины появления этих помех: коммутационные шумы, наводки с высоковольтных линий, грозовые разряды и т. п. Нормирование импульсных помех в канале ТЧ производится путем ограничения времени превышения ими заданных порогов анализа.

Флуктуационная (случайная) помеха характеризуется широким спектром и максимальной энтропией, и поэтому с ней труднее всего бороться. Однако в проводных каналах связи уровень флуктуационных по­мех достаточно мал и они при малой удельной скорости передачи информации практически не влияют на коэффициент ошибок.

Мультипликативные (умножения на сигнал) помехи обусловлены случайными изменениями параметров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала на выходе демодулятора. Различают плавные и скачкообразные изменения уровня. Плав­ные изменения происходят за время, которое намного больше, чем 0 – длительность единичного элемента; скачкообразные - за время, меньшее 0 . Причиной плавных изменений уровня могут быть колебания затухания линии связи, вызванные, например, изменением состояния погоды, а в радиоканалах - замирания. Причиной скачкообразных изменений уровня могут быть плохие контакты в аппаратуре, несовершенство эксплуатации аппаратуры связи, технологии измерений и др.

Снижение уровня более, чем 17,4 дБ ниже номинального, на­зывается перерывом. При перерыве уровень падает ниже порога чувствительности приемника и прием сигналов фактически прекращается. Перерывы длительностью меньше 300 мс принято называть кратковременными, больше 300 мс - длительными.

Импульсные помехи и перерывы являются основной причиной появления ошибок при передаче дискретных сообщений по про­водным каналам связи.

Аддитивные помехи содержат три составляющие: сосредоточенную по частоте (гармоническую), сосредоточенную во времени (импульсную) и флуктуационную. Помеха, сосредоточенная по частоте, имеет спектр значительно уже полосы пропускания канала. Импульсная помеха представляет собой последовательность кратковременных импульсов, разделенных интервалами, превышающими время переходных процессов в ка­нале. Флуктуационную помеху можно представить как последовательность непрерывно следующих один за другим импульсов, имеющую широкий спектр, выходящий за пределы полосы пропускания канала. Импульсную помеху можно рассматривать как крайний случай флуктуационной, когда её энергия сосредоточена в отдельных точках временной оси, а гармоническую помеху - как другой крайний случай, когда вся энергия сосредоточена в отдельных точках частотной оси.

Характеристиками аддитивных помех в каналах ТЧ являются псофометрическая мощность шума и уровень не взвешенного шума. Первая величина измеряется прибором с квадратичным детектором и специальным контуром, учитывающим чувствительность человеческого уха, микрофона и телефона к напряжениям различных частот. Средняя величина псофометрической мощности составляет 2*10-15 Вт/м. Не взвешенный шум измеряют прибором с квадратичным детектором, имеющим время интегрирования 200 мс. Эта величина в точке с относительным нулевым уровнем не должна превышать -49 дБ на одном участке переприёма. Указанные характеристики не охватывают импульсные шумы, которые измеряют отдельно и специальными приборами. Мультипликативные помехи в каналах связи выражаются в основном в изменении остаточного затухания, приводящего к изменениям уровня сигнала. Изменения уровня сигнала в реальных каналах связи весьма разнообразны по своему характеру. Так, например, различают плавные и скачкообразные изменения уровня сигнала (иногда их называют изменениями остаточного затухания), кратковременные занижения уровня, кратковременные и длительные перерывы.

Плавными изменениями уровня называют такие, при которых отклонение уровня от своего номинального значения до максимального (минимального) происходит за время, несоизмеримо большее длительности единичных элементов передаваемого сигнала т0. К скачкообразным изменениям уровня относятся те, при которых изменение уровня от значения рН0М до рМАКС происходит за время, соизмеримое с временем единичного интервала 0.

Исследования показали, что за длительный промежуток времени отклонения уровня от номинального значения происходят как в сторону повышения, так и в сторону понижения, при этом оба направления изменения имеют примерно равную вероятность. Изменения такого рода могут быть отнесены к числу медленных изменений остаточного затухания. Наряду с ними имеют место быстрые, сравнительно кратковременные изменения остаточного затухания, в основном приводящие к уменьшению уровня приема. Значительные занижения уровня сигнала приводят к искажениям принимаемых сигналов и, как следствие, к ошибкам. Занижения уровня сигнала уменьшают его помехозащищенность, что также вызывает рост числа ошибок. И, наконец, в синхронных системах снижение уровня сигнала приводит к нарушению работы синхронизации и затрате определенного времени на вхождение, в режим синхронизации при восстановлении нормального уровня. Поэтому в современных системах ПДИ имеются специальные устройства, которые блокируют приемник и его систему синхронизации при уменьшении уровня сигнала ниже заданного значения - П. По этой причине занижение уровня на величину, большую или равную П, получило название перерыва. При передаче данных согласно рекомендациям ЕАСС перерывом считают П= 17,4 дБ. Перерывы делят на кратковременные и длительные

Для коммутируемых каналов ТЧ существует следующая нор­ма: t КР.ПЕР ЗОО мс. Это время выбрано из принятых в аппаратуре телефонной коммутации схемных решений, которые в случае перерыва длительностью более 300 мс обеспечивают разъединение ранее установленного соединения, т. е. приводят к отказу связи. Указанная величина рекомендуется МСЭ в качестве критерия отказа для передачи по коммутируемым каналам ТЧ. Рекомендуемая доля кратковременных перерывов на одном переприемном участке не должна превышать 1,5*10-5 за 90% часовых отрезков времени.

Плавные изменения уровня до некоторой степени характеризуются величиной стабильности остаточного затухания. Согласно рекомендациям МСЭ остаточное затухание для двухпроводного канала ТЧ должно составлять 7,0, для четырёхпроводного - 17,4 дБ, а его нестабильность во времени на одном участке переприёма - не превышать 1,75 дБ.

В каналах связи возникают также своеобразные мультипликативные помехи, связанные с нестабильностью генераторов поднесущих частот аппаратуры передачи. В результате затрудняется выделение на приёме когерентного колебания при ФМ или возникают искажения сигнала ЧМ. По существующим нормам расхождение поднесущих частот на участке переприёма ограничивается величиной 1 Гц. Кроме того, наряду со скачкообразными изменениями уровня сигнала в каналах связи имеют место скачки фазы, однако последние пока не нормированы.

25.Принципы построения СП (систем передачи) с временным разделением каналов (ВРК). Основные этапы преобразования аналоговых сигналов в цифровые (дискретизация по времени, квантование по уровню, кодирование).

В системах передачи с ВРК используются цифровые сигналы, представляющие собой ту или иную импульсную кодовую последовательность, т.е. это система для передачи цифровых данных. Напомним, что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ, КВАНТОВАНИЕ, КОДИРОВАНИЕ. Дискретизация осуществляется на основе теоремы Котельникова. Для сигналов ТЧ с полосой 0,3 – 3,4 кГц + 0,9 кГц (защитный интервал), т.е. fв = 4 кГц. Тактовая частота дискретизации fт = 2fв = 8 кГц. Каждый отсчёт передаётся 8 битами, значит сигнал ТЧ можно передавать со скоростью fт × 8 бит = 8×103 ×8 = 64 кбит/с. Это и есть скорость передачи одного канала ТЧ. Отсчёты передаются в виде восьмиразрядных двоичных чисел, получаемых при квантовании отсчётов. Т.к. квантование имеет конечное число уровней, да ещё ограничения по max и min, то очевидно, что квантованный сигнал не является точным. Разница между истинным значением отсчёта и его квантованным значением – это шум квантования. Значение шума квантования зависит от количества уровней квантования, скорости изменения сигнала и от спосрба выбора шага квантования.

Фазовое разделение сигналов

Фазовое разделение сигналов строится с использованием различия сигналов по фазе.

Пусть информация в N каналах передается изменением амплитуды непрерывных косинусоидальных сигналов с одинаковой несущей частотой щ 0 . Требуется разделить эти сигналы с использованием только различия в их начальных фазах.

Сигналы равны:

……………………………….

Как показывает анализ, различение сигналов возможно, если система содержит только два канала, по которым передаются косинусная и синусная составляющие:

а выделение первичных сигналов производится с использованием синхронного детектирования.

Разделение сигналов по форме

Кроме сигналов с неперекрывающимися спектрами и сигналов, неперекрывающихся по времени, существует класс сигналов, которые могут передаваться одновременно и иметь перекрывающиеся частотные спектры.

Разделение этих сигналов принято называть разделением по форме .

К числу таких сигналов относятся последовательности Уолша, Радемахера и разнообразные шумоподобные последовательности.

Последовательности Уолша и Радемахера строятся на базе кодового алфавита 1, -1, а любые пары этих последовательностей удовлетворяют условию

E i , i = j ,

0, i ? j ,

где - сигналы i - го и j - го каналов системы с временным разделением, T - интервал времени, в котором располагаются канальные сигналы, причем T= где F В - верхняя граничная частота спектра передаваемого сообщения.

Применение кодов Уолша и Радемахера связано с передачей по каналу специальных синхросигналов для поддержания определенных временных соотношений между принимаемыми и опорными кодовыми словами.

В случае использования шумоподобных последовательностей необходимости в передаче специальных синхросигналов нет, так как эту роль могут выполнять последовательности-переносчики информации.

Шумоподобные сигналы должны удовлетворять следующим условиям:

E, ф = 0,

0, -ф и > ф > -T ,

T > ф > ф и , (9.5)

0, i ? j , (9.6)

для - длительность шумоподобного сигнала; E - энергия сигнала; ф и - длительность единичного интервала шумоподобного сигнала.

При выполнении условий (9.5) обеспечивается работа системы синхронизации без передачи специального синхросигнала, так как автокорреляционная функция любого канального сигнала имеет ярко выраженный пик при ф = 0 и нулевые значения при сдвиге При выполнении условий (9.6) обеспечивается разделение канальных сигналов, так как взаимокорреляционная функция для любой пары сигналов равняется нулю.

К сожалению, скалярные произведения (9.5) для и (9.6) для реальных сигналов не равны нулю. Это приводит к снижению достоверности разделения сигналов.

Структурная схема многоканальной системы связи с разделением сигналов по форме приведена на рис.9.2.

Рис.9.2 Структурная схема многоканальной системы связи с разделением сигналов по форме: 1- генератор тактовых импульсов; 2- генератор шумоподобного сигнала; 3-АЦП; 4- перемножитель;; 5,6 - модуляторы; 7 - сумматор; 8 - передатчик; 9 - линия связи; 10 - приемник; 11 - согласованный фильтр; 12 - решающее устройство; 13 - ЦАП; 14,15 - демодуляторы

Передающая часть системы содержит N идентичных модуляторов, сумматор и передатчик. В модуляторах в качестве несущих колебаний используются шумоподобные сигналы, а в качестве модулирующих - сфазированные с этими сигналами двоичные кодовые последовательности с выхода АЦП. Период шумоподобных сигналов выбирается равным длительности единичного элемента кодового слова с выхода АЦП. В процессе модуляции символу «1» двоичного кодового слова (диаграмма а на рис.9.3) соответствует полный период шумоподобного сигнала (диаграмма б ), а символу «0» - отсутствие этого сигнала. Если F с - верхняя граничная частота спектра первичного сигнала, а L - число уровней квантования, то ширина спектра сигнала на выходе перемножителя (см. схему на рис. 9.2)

Где - длина (период) шумоподобной последовательности.

Как видно из формулы (9.7) ширина спектра каждого канального сигнала в раз больше ширины спектра ИКМ сигнала.

Рис.9.3. Временные диаграммы, поясняющие работу схемы, приведенной на рис.9.2

Отметим, что каждый канальный сигнал имеет свою форму, а временные процессы, протекающие в каналах, могут быть независимы. Групповой сигнал на выходе сумматора, равный сумме канальных сигналов, представляет собой случайный процесс, среднее значение и дисперсия которого зависит от загрузки отдельных каналов.

Приемная часть системы содержит приемник и N идентичных канальных приемников (демодуляторов). В структуру каждого демодулятора входит сргласованный фильтр, решающее устройство и ЦАП.

Каждый из согласованных фильтров откликается только на тот сигнал, с которым он согласован. Например, согласованный фильтр 11 первого канала откликается на сигнал, который формируется в первом модуляторе (рис.9.3, б ). Отклик фильтра показан на рис.9.3, в . Сигналы других каналов и их отклики на рис 9.3 для простоты не показаны. В решающем устройстве отклик согласованного фильтра 11 огибающая радиосигнала сравнивается с заданным пороговым уровнем U пор. Если происходит пересечение порога, то формируется оценка, передаваемого символа, равная 1, а если пересечения не происходит, то формируется оценка,равная нулевому символу.Кодовые слова с выхода решающего устройства 12 поступают на ЦАП 13 и преобразуются в сообщение a 1 * (t ).

Демодуляция сигнала происходит в присутствии помехи, которая состоит из двух составляющих. Первая является известной по предыдущим

главам суммой внутренней и внешней флуктуационных помех, а вторая - специфичной для систем с шумоподобными сигналами помехой. Эта помеха является суммой шумоподобных сигналовдругих каналов и называется структурной или взаимной помехой. Структурная помеха обусловлена тем, что системы используемых реальных сигналов являются «почти» ортогональными, т.е. для них не выполняется условие (9.6). Ее уровень определяется значениями взаимнокорреляционных функций между опорным канальным шумоподобным сигналом и присутствующими шумоподобными сигналами других каналов. С целью обеспечения заданного качества передаваемой информации, должны предусматриваться меры по уменьшению уровня этой структурной помехи. Рассмотренные принципы разделения сигналов по форме и построения многоканальной системы связи используется в многоканальных асинхронных адресных системах связи (ААСС) . В ААСС (рис.9.4) каждому абоненту присваивается один из «почти ортоганальных» шумоподобных сигналов, который является адресом канала.

Рис.9.4. Структурная схема многоканальной асинхронной адресной смстемы связи: 1,4,7,10 - абоненты 1,i,k,N; 2,5,8,11 - приемопередатчики; 3,6,9,12 - генераторы адресного сигнала; 13 - линия связи

Пусть, например, абоненту 1 нужно связаться с абонентом «k ». С этой целью набирается номер абонента «k » и таким образом вгенераторе адресного сигнала 1 устанавливается форма шумоподобного сигнала с номером «k ». Если число абонентов равно, то и число набираемых форм также равно

Шумоподобный сигнал с номером «k » посылается в линию связи и таким образом действует на входах приемников всех остальных абонентов. На шумоподобный сигнал «k » настроена приемная аппаратура только абонента «k », поэтому связь устанавливается между абонентами 1 и «k ». Приемники других абонентов на этот шумоподобный сигнал не откликаются. Ответная информация от абонента «k » передается с использованием шумоподобного сигнала с номером 1. Важной особенностью ААСС является отсутствие центральной коммутационной станции. Все абоненты имеют прямой доступ к друг другу, а если используется радиолиния, то частотная перестройка приемо-передатчиков для вхождения в связь не производится.

В заключение отметим, что в технической литературе имеется описание ААСС, в которых используется от 1000 до 1500 каналов с 50…100 активными абонентами.

Краткое описание CDMA

Примером внедрения технологии связи с шумоподобными сигналами является система с кодовым разделением каналов (CDMA - Code Division Multiple Access).

Замечательное свойство цифровой связи с шумоподобными сигналами- защищенность канала связи от перехвата, помех и подслушивания. Поэтому данная технология изначально разработана и использовалась для вооруженных сил США и лишь затем была передана для коммерческого использования.

Система CDMA фирмы Qualcom (стандарт IS-95) рассчитана на работу в диапазоне 800 МГц. Система CDMA построена по методу прямого расширения спектра частот на основе использования 64 видов последовательностей, сформированных по закону функций Уолша.

Каждому логическому каналу назначается свой код Уолша. Всего в одном физическом канале может быть 64 логических канала, так как последовательностей Уолша, которым в соответтвие ставятся логические каналы 64, каждая из которых имеет длину по 64 бита. При этом 9 каналов - служебные, а остальные 55 каналов используются для передачи данных.

При изменении знака бита информационного сообщения фаза используемой последовательности Уолша меняется на 180 градусов. Так как эти последовательности взаимно ортогональны, то взаимные помехи между каналами передачи одной базовой станции отсутствуют. Помехи по каналам передачи базовой станции создают лишь соседние базовые станции, которые работают в той же полосе частот и используют ту же самую ПСП, но с другим циклическим сдвигом.

В стандарте CDMA используется фазовая модуляция ФМ 4, ОФМ 4.

error: