В основу классификации ТВС положены наиболее характерные функциональные, информационные и структурные признаки.
По степени территориальной рассредоточенности элементов сети (абонентских систем, узлов связи) различают глобальные (государственные), региональные и локальные вычислительные сети (ГВС, РВС и ЛВС).
По характеру реализуемых функций сети делятся на вычислительные (основные функции таких сетей - обработка информации), информационные (для получения справочных данных по запросам пользователей), информационно-вычислительные, или смешанные, в которых в определенном, непостоянном соотношении выполняются вычислительные и информационные функции.
По способу управления ТВС делятся на сети с централизованным (в сети имеется один или несколько управляющих органов), децентрализованным (каждая АС имеет средства для управления сетью) и смешанным управлением, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления (например, под централизованным управлением решаются только задачи с высшим приоритетом, связанные с обработкой больших объемов информации).
По организации передачи информации сети делятся на сети с селекцией информации и маршрутизацией информации. В сетях с селекцией информации, строящихся на основе моноканала, взаимодействие АС производится выбором (селекцией) адресованных им блоков данных (кадров): всем АС сети доступны все передаваемые в сети кадры, но копию кадра снимают только АС, которым они предназначены. В сетях с маршрутизацией информации для передачи кадров от отправителя к получателю может использоваться несколько маршрутов. Поэтому с помощью коммуникационных систем сети решается задача выбора оптимального (например, кратчайшего по времени доставки кадра адресату) маршрута.
По типу организации передачи данных сети с маршрутизацией информации делятся на сети с коммутацией цепей (каналов), коммутацией сообщений и коммутацией пакетов. В эксплуатации находятся сети, в которых используются смешанные системы передачи данных.
По топологии, т.е. конфигурации элементов в ТВС, сети делятся на два класса: широковещательные (рис. 11.1) и последовательные (рис. 11.2). Широковещательные конфигурации и значительная часть последовательных конфигураций (кольцо, звезда с интеллектуальным центром, иерархическая) характерны для ЛВС. Для глобальных и региональных сетей наиболее распространенной является произвольная (ячеистая топология). Нашли применение также иерархическая конфигурация и “звезда”.
В широковещательных конфигурациях в любой момент времени на передачу кадра может работать только одна рабочая станция (абонентная система). Остальные PC сети могут принимать этот кадр, т.е. такие конфигурации характерны для ЛВС с селекцией информации. Основные типы широковещательной конфигурации - общая шина, дерево, звезда с пассивным центром. Главные достоинства ЛВС с общей шиной - простота расширения сети, простота используемых методов управления, отсутствие необходимости в централизованном управлении, минимальный расход кабеля. ЛВС с топологией типа “дерево” - это более развитый вариант сети с шинной топологией. Дерево образуется путем соединения нескольких шин активными повторителями или пассивными размножителями (“хабами”), каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных. В ЛВС с топологией типа “звезда” в центре находится пассивный соединитель или активный повторитель -достаточно простые и надежные устройства. Для защиты от нарушений в кабеле используется центральное реле, которое отключает вышедшие из строя кабельные лучи.
Рис. 11.1. Широковещательные конфигурации сетей: а - общая шина; б- дерево; в - звезда с пассивным центром
Рис. 11.2. Последовательные конфигурации сетей: а - произвольная (ячеистая); б- иерархическая; в - кольцо; г - цепочка; д - звезда с интеллектуальным центром; е - снежинка
В последовательных конфигурациях, характерных для сетей с маршрутизацией информации, передача данных осуществляется последовательно от одной PC к соседней, причем на различных участках сети могут использоваться разные виды физической передающей среды.
К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях. К последовательным конфигурациям относятся: произвольная (ячеистая), иерархическая, кольцо, цепочка, звезда с интеллектуальным центром, снежинка. В ЛВС наибольшее распространение получили кольцо и звезда, а также смешанные конфигурации - звездно-кольцевая, звездно-шинная.
В ЛВС с кольцевой топологией сигналы передаются только в одном направлении, обычно против часовой стрелки. Каждая PC имеет память объемом до целого кадра. При перемещении кадра по кольцу каждая PC принимает кадр, анализирует его адресное поле, снимает копию кадра, если он адресован данной PC, ретранслирует кадр. Естественно, что все это замедляет передачу данных в кольце, причем длительность задержки определяется числом PC. Удаление кадра из кольца производится обычно станцией-отправителем. В этом случае кадр совершает по кольцу полный круг и возвращается к станции-отправителю, который воспринимает его как квитанцию - подтверждение получения кадра адресатом. Удаление кадра из кольца может осуществляться и станцией-получателем, тогда кадр не совершает полного круга, а станция-отправитель не получает квитанции-подтверждения.
Кольцевая.структура обеспечивает довольно широкие функциональные возможности ЛВС при высокой эффективности использования моноканала, низкой стоимости, простоте методов управления, возможности контроля работоспособности моноканала.
В широковещательных и большинстве последовательных конфигураций (за исключением кольца) каждый сегмент кабеля должен обеспечивать передачу сигналов в обоих направлениях, что достигается: в полудуплексных сетях связи - использованием одного кабеля для поочередной передачи в двух направлениях; в дуплексных сетях - с помощью двух однонаправленных кабелей; в широкополосных системах - применением различной несущей частоты для одновременной передачи сигналов в двух направлениях.
Глобальные и региональные сети, как и локальные, в принципе могут быть однородными (гомогенными), в которых применяются программно-совместимые ЭВМ, и неоднородными (гетерогенными), включающими программно-несовместимые ЭВМ. Однако, учитывая протяженность ГВС и РВС и большое количество используемых в них ЭВМ, такие сети чаще бывают неоднородными.
Современные сети можно классифицировать по различным признакам:
По удаленности компьютеров :
Локальные LAN (Local Area Network) - сеть в пределах предприятия, учреждения, одной организации. Компьютеры расположены на расстоянии до нескольких километров и обычно соединены при помощи скоростных линий связи.
Региональные MAN (Metropolitan Area Network) - объединяют пользователей области, города, небольших стран. В качестве каналов связи используются телефонные линии. Расстояние между узлами сети составляет от 10 до 1000 км.
Глобальные WAN (Wide Area Network) - включают другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры.
По назначению и перечню предоставляемых услуг:
- Общее использование файлов и принтеров - с помощью специальной ЭВМ (файл-сервер, принтер-сервер) организуется доступ пользователей к файлам и принтерам.
Общее использование баз данных - с помощью специальной ЭВМ (сервер баз данных) организуется доступ пользователей к базе данных.
Применение технологий Интернет - электронная почта, Всемирная паутина, телеконференции, видеоконференции, передача файлов через Интернет.
По способу организации взаимодействия:
- Одноранговые сети - все компьютеры одноранговой сети равноправны, при этом любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере. Главное достоинство одноранговых сетей - это простота установки и эксплуатации. Главный недостаток состоит в том, что в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным.
- Сети с выделенным сервером (иерархические сети ) - при установке сети заранее выделяются один или несколько серверов - компьютеров, управляющих обменом данных по сети и распределением ресурсов. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией . Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных.
К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:
Необходимость дополнительной ОС для сервера.
Более высокая сложность установки и модернизации сети.
Необходимость выделения отдельного компьютера в качестве сервера
По технологии использования сервера:
Сети с архитектурой файл-сервер - используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.
Сети с архитектурой клиент-сервер - между приложением-клиентом и приложением-сервером осуществляется обмен данными. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль за доступом к ресурсам и данным. Рабочая станция получает только результаты запроса.
По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные:
Низкоскоростные сети - до 10 Мбит/с;
Среднескоростные сети- до 100 Мбит/с;
Высокоскоростные сети - свыше 100 Мбит/с.
По типу среды передачи сети разделяются на:
Проводные (на коаксиальном кабеле, на витой паре, оптоволоконные);
Беспроводные с передачей информации по радиоканалам или в инфракрасном диапазоне.
По топологии (как соединены компьютеры между собой):
Общая шина;
Топология сетей
Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети.
В топологии сетей применяют несколько специализированных терминов:
Узел сети - компьютер, либо коммутирующее устройство сети;
Ветвь сети - путь, соединяющий два смежных узла;
Оконечный узел - узел, расположенный в конце только одной ветви;
Промежуточный узел - узел, расположенный на концах более чем одной ветви;
Смежные узлы - узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов.
Любую компьютерную сеть можно рассматривать как совокупность узлов. Конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети. Логические связи представляют собой маршруты передачи данных между узлами сети, образуются путем соответствующей настройки оборудования.
Существует три основных типа физической топологии локальных вычислительных сетей :
Кольцевая топология предусматривает соединение узлов сети замкнутой кривой, т.е. кабелем передающей среды. В такой сети к каждому узлу присоединены две и только две ветви. Информация по кольцу передаётся от узла к узлу, как правило, в одном направлении. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение.
Принимающий узел распознаёт и получает только адресованные ему сообщения. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии - простота управления, недостаток - возможность отказа всей сети при сбое в канале между двумя узлами.
Шинная топология одна из наиболее простых, реализуется с помощью кабеля, к которому подключаются все компьютеры. Все сигналы, передаваемые любым компьютером в сеть, идут по шине в обоих направлениях ко всем остальным компьютерам.
Топология звезда использует отдельный кабель для каждого компьютера, проложенный от центрального устройства, называемого хабом (hub) или концентратором. Концентратор транслирует сигналы, поступающие на любой из его портов, на все остальные порты, в результате чего сигналы, посылаемые одним узлом, достигают остальных компьютеров. В такой сети имеется только один промежуточный узел. Сеть на основе «звезды» более устойчива к повреждениям по сравнению сетью на базе шинной архитектуры, так как повреждение кабеля затрагивает непосредственно только тот компьютер, к которому он соединен, а не всю сеть.
В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией . Выбор той или иной топологии определяется областью применения сети, географическим расположением ее узлов и размерностью сети в целом.
Модель взаимосвязи открытых систем. Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации. Одним из примеров решения данной задачи является так называемая модель взаимосвязи открытых систем OSI (Model of Open System Interconnections).
Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней - до семи). Самый верхний уровень - прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Caмый нижний уровень - физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.
Рассмотрим, как в модели ОSI происходит обмен данными между пользователями, находящимися на разных континентах.
1. На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).
2. На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти , в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.
3. На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на «выход в эфир» и передают документ к протоколам транспортного уровня.
4. На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.
5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.
6. Уровень соединения (Канальный уровень) необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем.
Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов — только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.
Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.
На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.
Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, «обрастают» дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой.
Чтобы различные компьютеры сети могли установить связь друг с другом, они должны “разговаривать” на одном языке, то есть использовать один и тот же протокол. Протокол - это “язык”, используемый для обмена данными при работе в сети.
Существует множество протоколов, каждый из них выполняет различные задачи. На разных уровнях модели OSI используются различные протоколы.
Ethernet - это протокол Уровня соединения, используемый большинством современных локальных сетей. Протокол Ethernet обеспечивает унифицированный интерфейс к сетевой среде передачи, который позволяет операционной системе использовать для приема и передачи данных несколько протоколов Сетевого уровня одновременно. Token Ring - это альтернатива «классическому» протоколу Ethernet на Уровне соединения.
Для возможности передачи информации по сетевым каналам связи необходимо установить протокол обмена сообщениями (пакетами). Существует несколько таких протоколов. Наиболее широко используются следующие: NetBEUI , IPX/SPX , TCP/IP . Протоколы NETBEUI и IPX/SPX - используется в локальных сетях. Протоколы TCP/IP являются базовыми протоколами глобальной сети Интернет.
Сетевое оборудование
Основными компонентами сети являются рабочие станции , серверы , передающие среды (кабели ) и сетевое оборудование .
Рабочими станциями называются компьютеры сети, на которых пользователями сети реализуются прикладные задачи.
Серверы сети - это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа. Сервером может быть это любой подключенный к сети компьютер, на котором находятся ресурсы, используемые другими устройствами сети. В качестве аппаратной части сервера используется достаточно мощные компьютеры.
Выделяют следующие виды сетевого оборудования:
Сетевые кабели (коаксиальные , состоящие из двух изолированных между собой концентрических проводников, из которых внешний имеет вид трубки; кабели на витых парах , образованные двумя переплетёнными друг с другом проводами; оптоволоконные и др.).
Сетевые карты (Сетевые интерфейсные адаптеры) - это контроллеры, подключаемые к материнской плате компьютера, предназначенные для передачи сигналов в сеть и приема сигналов из сети. К разъёмам адаптеров подключается сетевой кабель.
Концентраторы (Hub ) - это центральные устройства кабельной системы или сети физической топологии "звезда", которые при получении пакета на один из своих портов пересылает его на все остальные. Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами. К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля.
Для соединения локальных сетей друг с другом используются следующие устройства:
Мосты (Bridge) - устройства сети, которые соединяют два отдельных сегмента, ограниченных своей физической длиной. Мосты также усиливают и конвертируют сигналы для кабеля другого типа. Это позволяет расширить максимальный размер сети.
Мосты передают данные между сетями в пакетном виде, не производя в них никаких изменений. Ниже на рисунке показаны три локальные сети, соединённые двумя мостами. Кроме этого, мосты могут фильтровать пакеты , охраняя всю сеть от локальных потоков данных и пропуская наружу только те данные, которые предназначены для других сегментов сети.
Шлюзы (Gateway ) - программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет решать проблемы различия протоколов или систем адресации. Шлюз, в отличие от моста, применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы. Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети.
Маршрутизаторы (Router ) - стандартные устройства сети, работающие на сетевом уровне и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую. Он позволяет, например, расщеплять большие сообщения на более мелкие порции, обеспечивая тем самым взаимодействие локальных сетей с разным размером пакета. Маршрутизатор может пересылать пакеты на конкретный адрес (мосты могут только отфильтровывают ненужные пакеты), выбирать лучший путь для прохождения пакета.
Межсетевые экраны (firewall, брандмауэры ) - это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения, реализующий контроль за поступающей в локальную сеть и выходящей из нее информацией, и обеспечивающие защиту локальной сети посредством фильтрации информации.
Большинство межсетевых экранов построено на классических моделях разграничения доступа, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается или запрещается доступ к какому-либо объекту (файлу или узлу сети) при предъявлении некоторого уникального, присущего только этому субъекту, элемента. В большинстве случаев этим элементом является пароль. Для сетевого пакета таким элементом являются адреса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры.
БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
МЕЖДУНАРОДНЫЙ ИНСТИТУТ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ
КОНТРОЛЬНАЯ РАБОТА
ПО УЧЕБНОЙ ДИСЦИПЛИНЕ: Компьютерные сети
Виды компьютерных сетей
Компьютерные сети можно классифицировать по различным признакам.
I . По принципам управления :
1. Одноранговые - не имеющие выделенного сервера. В которой функции управления поочередно передаются от одной рабочей станции к другой;
2. Многоранговые - это сеть, в состав которой входят один или несколько выделенных серверов. Остальные компьютеры такой сети (рабочие станции) выступают в роли клиентов.
II . По способу соединения :
1. "Прямое соединение "- два персональных компьютера соединяются отрезком кабеля. Это позволяет одному компьютеров (ведущему) получить доступ к ресурсам другого (ведомого);
2. "Общая шина " - подключение компьютеров к одному кабелю;
3. "Звезда " - соединение через центральный узел;
4. "Кольцо " - последовательное соединение ПК по двум направлениям.
III . По охвату территории :
1. Локальная сеть (сеть, в которой компьютеры расположены на расстоянии до километра и обычно соединены при помощи скоростных линий связи.) - 0,1 - 1,0 км; Узлы ЛВС находятся в пределах одной комнаты, этажа, здания.
2. Корпоративная сеть (в пределах находятся в пределах одной организации, фирмы, завода). Количество узлов в КВС может достигать нескольких сотен. При этом в состав корпоративной сети обычно входят не только персональные компьютеры, но и мощные ЭВМ, а также различное технологическое оборудование (роботы, сборочные линии и т.п.).
Корпоративная сеть позволяет облегчить руководство предприятием и управление технологическим процессом, установить четкий контроль за информационными и производственными ресурсами.
3. Глобальная сеть (сеть, элементы которой удалены друг от друга на значительное расстояние) - до 1000 км.
В качестве линий связи в глобальных сетях используются как специально проложенные (например, трансатлантический оптоволоконный кабель), так и существующие линии связи (например, телефонные сети). Количество узлов в ГВС может достигать десятков миллионов. В состав глобальной сети входят отдельные локальные и корпоративные сети.
4. Всемирная сеть - объединение глобальных сетей (Internet).
ТОПОЛОГИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ
Топология сети – геометрическая форма и физическое расположение компьютеров по отношению к друг другу. Топология сети позволяет сравнивать и классифицировать различные сети. Различают три основных вида топологии:
1) Звезда;
2) Кольцо;
ШИННАЯ ТОПОЛОГИЯ
Эта топология использует один передающий канал на базе коаксиального кабеля, называемый "шиной". Все сетевые компьютеры присоединяются напрямую к шине. На концах кабеля-шины устанавливаются специальные заглушки - "терминаторы" (terminator). Они необходимы для того, чтобы погасить сигнал после прохождения по шине. К недостаткам топологии "Шина" следует отнести следующее:
Данные, предаваемые по кабелю, доступны всем подключенным компьютерам;
В случае повреждения "шины" вся сеть перестает функционировать.
ТОПОЛОГИЯ «КОЛЬЦО»
Для топологии кольцо характерно отсутствие конечных точек соединения; сеть замкнута, образуя неразрывное кольцо, по которому передаются данные. Эта топология подразумевает следующий механизм передачи: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии "кольцо" те же, то и у топологии "шина":
Общедоступность данных;
Неустойчивость к повреждениям кабельной системы.
ТОПОЛОГИЯ «ЗВЕЗДА»
В сети с топологией "звезда" все компьютеры соединены со специальным устройством, называемым сетевым концентратором или "хабом" (hub), который выполняет функции распределения данных. Прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому, имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы. Однако функциональность сети зависит от состояния сетевого концентратора.
Методы доступа к несущей в компьютерных сетях
В различных сетях существуют различные процедуры обмена данными между рабочими станциями.
Международный институт инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers - IEEE) разработал стандарты (IEEE802.3, IEEE802.4 и IEEE802.5), которые описывают методы доступа к сетевым каналам данных.
Наибольшее распространение получили конкретные реализации методов доступа: Ethernet, ArcNet и Token Ring. Эти реализации основаны соответственно на стандартах IEEE802.3, IEEE802.4 и IEEE802.5.
Метод доступа Ethernet
Этот метод доступа, разработанный фирмой Xerox в 1975 году, пользуется наибольшей популярностью. Он обеспечивает высокую скорость передачи данных и надежность.
Для данного метода доступа используется топология "общая шина". Поэтому сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными станциями, подключенными к общей шине. Но сообщение предназначено только для одной станции (оно включает в себя адрес станции назначения и адрес отправителя). Та станция, которой предназначено сообщение, принимает его, остальные игнорируют.
Метод доступа Ethernet является методом множественного доступа с прослушиванием несущей и разрешением конфликтов, называемых коллизиями (CSMA/CD -Carter Sense Multiple Access with Collision Detection).
Перед началом передачи рабочая станция определяет, свободен канал или занят. Если канал свободен, станция начинает передачу.
Ethernet не исключает возможности одновременной передачи сообщений двумя или несколькими станциями. Аппаратура автоматически распознает такие конфликты. После обнаружения конфликта станции задерживают передачу на некоторое время. Это время небольшое и для каждой станции свое. После задержки передача возобновляется.
Реально конфликты приводят к уменьшению быстродействия сети только в том случае, если работает несколько десятков или сотен станций.
Метод доступа ArcNet
Этот метод разработан фирмой Datapoint Corp. Он тоже получил широкое распространение, в основном благодаря тому, что оборудование ArcNet дешевле, чем оборудование Ethernet или Token-Ring.
ArcNet используется в локальных сетях с топологией "звезда". Один из компьютеров создает специальный маркер (сообщение специального вида), который последовательно передается от одного компьютера к другому.
Если станция желает передать сообщение другой станции, она должна дождаться маркера и добавить к нему сообщение, дополненное адресами отправителя и назначения. Когда пакет дойдет до станции назначения, сообщение будет "отцеплено" от маркера и передано станции.
Метод доступа Token-Ring
Метод доступа Token-Ring был разработан фирмой IBM и рассчитан на кольцевую топологию сети.
Этот метод напоминает ArcNet, так как тоже использует маркер, передаваемый от одной станции к другой. В отличие от ArcNet при методе доступа Token-Ring имеется возможность назначать разные приоритеты разным рабочим станциям.
Среды передачи данных, их характеристики
Коаксиальный кабель
Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля - "Толстый коаксиальный кабель" (Thicknet) и "Тонкий коаксиальный кабель" (Thinnet). Сети на основе коаксиального кабеля обеспечивают передачу со скоростью до 10 Мбит/с. Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.
"Витая пара"
Кабель типа "витая пара" (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса - "экранированная витая пара" ("Shielded twisted pair") и "неэкранированная витая пара" ("Unshielded twisted pair"). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе "витой пары" в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).
Оптоволоконный кабель
Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой. Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.
В зависимости от масштабируемости сети, будет зависеть, каким способом на данном предприятии, будет происходить управления сети. Существует несколько способов управления. Локальные вычислительные сети по способу управления подразделяются на две подгруппы: одноранговые и иерархичные (многоуровневые) сети.
Одноранговые сети
В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного (dedicated) сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступными по сети.
Одноранговые сети называют также рабочими группами. Рабочая группа это - небольшой коллектив, поэтому в одноранговых сетях чаще всего не более 30 компьютеров. Одноранговые сети относительно просты.
Поскольку каждый компьютер является одновременно и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей.
Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных (и более дорогих) компьютеров. В одноранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером.
Рисунок 5. Одноранговая сеть
Иерархические сети
В иерархических сетях имеется один или несколько серверов, на которых хранится информация, совместно используемая различными пользователями. С целью повышения надежности хранения информации на сервере может быть установлено два работающих параллельно и дублирующих друг друга диска,
при этом в случае отказа одного из них в работу автоматически включается другой. В зависимости от способов использования сервера в иерархических сетях различают серверы следующих типов:
Файловый сервер. В этом случае на сервере находятся совместно обрабатываемые файлы или (и) совместно используемые программы. Одним из примеров применения файлового сервера является размещение на нем программ MS Office. В этом случае на рабочих станциях находится только небольшая (клиентская) часть этих программ, требующая незначительных ресурсов. Программы, допускающие такой режим работы, называются программами с возможностью инсталляции в сети.
Сервер баз данных. В этом случае на сервере размещается база данных (например, Консультант Плюс, Гарант, Счета клиентов банка и др.). База данных на сервере может пополняться с различных рабочих станций или (и) выдавать информацию по запросам с рабочей станции.
Клиенты Иерархической сети могут использовать операционные системы: Windows XP, Windows Vista,Windows 7, для серверов необходимы специальные серверные версии операционных систем.

Рисунок 6. Иерархическая сеть
В нашем сервисном центре будет использоваться иерархическая сеть. Для нашего случая это самый подходящий вариант. Чтобы наша сеть не превратилась в информационную «помойку», а также, чтоб повысить надежность хранения информации, необходимо иметь несколько серверов. В данном случае файловый сервер, интернет сервер и сервер баз данных. На сервере будут размещаться программы MS Office, 1С и другие, а на рабочих станциях, будет находиться только небольшая (клиентская) часть этих программ, требующая незначительных ресурсов. Также необходимо каждому пользователю выделить его права, в локальной сети.
Данные модели определяют взаимодействие компьютеров в локальной вычислительной сети. В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к данным, которые хранятся на его компьютере.
Рабочая группа (Workgroup) - это самостоятельное решение организации компьютерной сети для небольшого количества компьютеров, которая имеет одноранговую архитектуру и процесс аутентификации в которой происходит на основе локальной базы, хранящиеся на каждом из компьютеров рабочей группы
В одноранговой сети пользователю, работающему за любым компьютером доступны ресурсы всех других компьютеров сети. Например, сидя за одним компьютером, можно редактировать файлы, расположенные на другом компьютере, печатать их на принтере, подключенном к третьему, запускать программы на четвертом.
К достоинствам такой модели организации ЛВС относится простота реализации и экономия материальных средств, так как нет необходимости приобретать дорогой сервер.
Несмотря на простоту реализации, данная модель имеет ряд недостатков:
- 1. Низкое быстродействие при большом числе подключенных компьютеров;
- 2. Отсутствие единой информационной базы;
- 3. Отсутствие единой системы безопасности информации;
- 4. Зависимость наличия в системе информации от состояния компьютера, т.е. Если компьютер выключен, то вся информация, хранящиеся на нем, будет недоступна.
Active Directory
Active Directory позволяет управлять администраторам с одного рабочего места всеми заявленными ресурсами: файлами, периферийными устройствами, базами данных, подключениями к серверам, доступом к Web, пользователями, сервисами.
В сетях с развертыванием DNS для поддержки службы каталогов Active Directory настоятельно рекомендуется использовать основные зоны, интегрированные в службу каталогов, которые предоставляют следующие преимущества:
- 1. Обновление главным сервером и расширенные средства безопасности, базирующиеся на возможностях Active Directory.
- 2. Репликация и синхронизация зон с новыми контроллерами домена выполняется автоматически при каждом добавлении нового контроллера в домен Active Directory.
- 3. За счет сохранения баз данных зон DNS в Active Directory имеется возможность рационализировать репликацию баз данных в сети.
- 4. Репликация каталогов выполняется быстрее и эффективнее, чем стандартная репликация DNS.
Поскольку репликация Active Directory выполняется на уровне отдельных свойств, распространяются только необходимые изменения. При этом для зон, интегрированных в службу каталогов, используется и отправляется меньший объем данных.
В качестве достоинств такой модели следует выделить:
- 1. Высокое быстродействие сети;
- 2. Наличие единой информационной базы;
- 3. Наличие единой системы безопасности.
Однако у данной модели есть и недостатки. Главный недостаток заключается в том, что стоимость создания сети типа клиент-сервер значительной выше, за счет необходимости приобретать специальный сервер. Также к недостаткам можно отнести и наличие дополнительной потребности в обслуживающем персонале - администраторе сети.
Для данной организации была выбрана локально-вычислительная сеть на основе клиент-серверной модели. Сервер в данной организации будет представлен в виде компьютера из класса №2, к которому иметь доступ будет только управляющий персонал интернет-кафе. Сервер будет размещен в специальном компьютерном шкафу для защиты.