Возможно, вы слышали такие выражения как «8-бит» и «16-бит» . Когда люди упоминают биты, они говорят о том, сколько цветов содержится в файле изображения. Цветовые режимы фотошопа определяют разрядность изображения (1, 8, 16 или 32 бит). Так как вы будете работать с этими характеристиками довольно часто (например, когда в диалоговом окне Новый вам предстоит выбрать и количество бит), полезно узнать, что эти цифры означают.
Бит — наименьшая единица измерения, используемая компьютерами для хранения информации. Каждый пиксель в изображении обладает битовой глубиной, которая контролирует сколько информации о цвете может содержать данный пиксель.
Так битовая глубина изображения определяет, сколько цветовой информации содержит данное изображение. Чем больше битовая глубина, тем больше цветов может отображаться в изображении.
Рассмотрим вкратце варианты с различным числом бит в Photoshop.
1. В цветовом режиме пиксели могут быть только черными или белыми. Изображения в этом режиме называются 1-битными , потому что каждый пиксель может быть только одного цвета — черный или белый.
2. 8-битное изображение может содержать два значения в каждом бите, что равняется 256 возможным значениям цвета. Почему 256? Так как каждый из восьми бит может содержать два возможных значения, вы получаете 256 комбинаций.
С 256 комбинациями для каждого канала в изображении RGB у вас может быть более 16 миллионов цветов.
3. 16-битные изображения содержат 65536 цветов в одном канале. Они выглядят так же, как и другие изображения на экране, но занимают в два раза больше места на жестком диске. Такие изображения очень нравятся фотографам, потому что дополнительные цвета обеспечивают им большую гибкость при коррекции параметров Кривые и Уровни , даже несмотря на то, что более крупные размеры файлов могут очень сильно замедлить работу программы.
Кроме того, не все инструменты и фильтры работают с 16-битными изображениями, но список инструментов, работающих с ними, растет с каждой новой версией программы.
4. 32-битные изображения , которые относят к изображениям с расширенным динамическим диапазоном (High Dynamic Range, HDR), содержат больше цветов, чем вы можете себе представить. Но об этом пойдет речь в будущих статьях об HDR.
В основном, вы будете иметь дело с 8-битными изображениями, но если у вас есть фотоаппарат, делающий снимки с большей битовой глубиной, во что бы то ни стало, возьмите выходной и поэкспериментируйте, чтобы понять стоит ли ради разницы в качестве жертвовать пространством на жестком диске и скоростью редактирования.
Заметили ошибку в тексте - выделите ее и нажмите Ctrl + Enter . Спасибо!
8-битное изображение, 16-битное изображение… Сканер с глубиной цвета 48 бит… Любой человек интуитивно понимает – чем больше глубина цвета, тем что-то там лучше Но что именно? И вообще – есть ли практическая польза в этих цифрах для простого отолюбителя?
Сначала – несколько основных понятий.
Бит – это самая маленькая порция информации. Он может обозначать
- 0 или 1,
черное или белое,
Вкл или Выкл.
Большая часть сегодняшних цифровых устройств работает с 8-битными изображениями. Это ваш струйный фотопринтер и, вполне возможно, даже ваш монитор. То есть почти все картинки, которые вы видите, являются 8-битными.
Небольшой оффтопик
Если печатать черно-белое фото на струйнике, используя только один черный картридж, качество будет хуже, чем если печатать с использованием всех картриджей (четырех, шести или восьми – сколько там у вас есть?).
Почему с одним черным картриджем хуже? Ведь изображение черно-белое?
Потому что принтер сможет воспроизвести всего лишь 256 градаций яркости – от белого до самого черного. Для картинок с большим количеством полутонов и плавными переходами яркости этого бывает недостаточно. Картинка выглядит грубовато.
Если же использовать еще и цветные картриджи, то смешивание трех основных цветов (пурпурного, голубого и желтого) может дать миллионы оттенков серого (256х256х256). Почувствуйте разницу
(На самом деле все несколько сложнее, но суть остается – 8 бит для отображения даже черно-белой картинки маловато).
Сколько на самом деле - 8 бит или 24?
Любое цифровое изображение всегда состоит из 3-х основных цветов :
- красного, зеленого и синего
голубого, пурпурного и желтого
Для хранения информации о каждом из 3-х цветов используется 8 бит. Так что если быть совершенно точным, то правильнее называть такие изображения не 8-битными, а 24-битными (8х3).
Поэтому 8-битное изображение и 24-битное – это вообще-то синонимы.
8 (24) и 16 (48) бит – две ОГРОМНЫЕ разницы
Вместо использования всего лишь 8 бит для представления одного цвета, более продвинутые устройства иногда могут использовать 12 или даже 16 бит .
16-битное изображение может хранить 65,536 дискретных уровней информации для каждого цвета, вместо 256 уровней, на которые способны 8-битные изображения. Можете представить, насколько больше нюансов может передать 16-битное изображение. Если картинка очень сложная и нежная, с большим количеством полутоновых переходов, то такое различие может поистине разительным.
И точно так же как цветные 8-битные 24-битными , так и цветные 16-битные изображения на самом деле являются 48-битными (16x3), если помнить, что они состоят из трех цветов.
Теоретически, 48-битное изображение может передать просто сумасшедшее количество цветовых оттенков. 281474976710656 , если быть точным. Не хило…
На что способны сегодняшние микросхемы
Все микросхемы обработки изображений в сканерах и цифровых фотоаппаратах способны порождать 24-битные
(8х3) изображения.
Некоторые могут генерировать 36-битные
(12x3) фотографии, а некоторые топовые модели сканеров и фотоаппаратов могут давать полноценные 48-битные
(16x3) картинки.
В большой глубине цвета есть свои плюсы и свои минусы.
Сколько издевательств может выдержать картинка?
Часто на мониторе вы не сможете на глаз отличить 8-битную картинку от 16-битной.
Но!
Главный момент, когда разница между 8-ю и 16-ю битами начинает проявляться (причем разительно) – это при любой операции по редактированию изображения. Например, применение дежурной операции Levels или Curves в фотошопе для 8-битного изображения может давать гораздо более грубые результаты, чем для 16-битного.
Любая операция по редактирования изображения приводит к необратимой потере информации (иногда – едва заметной, иногда – сильно заметной). Рано или поздно эта деградация начинает быть видимой глазом. У 16-битного изображения гораздо больший «запас прочности», чем у 8-битного.
Настолько больший, насколько 65536 больше, чем 256.
Когда информация о цветах картинки сжимается или растягивается при использовании операций Levels или Curves , данные 8-битного файла быстро превращаются в решето, а гистограмма – в беззубую расческу (как видно на иллюстрации ниже ). Все это ведет к постеризации . Постеризация проявляет себя в виде грубых ступенчатых переходов цвета и яркости.
Фотография, приведенная выше, хорошо иллюстрирует этот эффект. Диапазон яркостей на этой фотографии просто огромен – от почти выжженных ослепительно-белых облаков до глубоких теней на земле.
Вдобавок сюжет каждую секунду менялся – дирижаблю то взлетал, то опускался, ветер поворачивал его в разные стороны, люди бегали, солнце светило то в лицо, то пряталось за дирижаблем. Естественно, сделать идеальный снимок было очень трудно, и его пришлось потом «доводить» в фотошопе.
Поскольку я обрабатывал 16-битное изображение, финальная гистограмма выглядела более-менее удовлетворительно:
Конечно, видны прорехи – безвозвратно потерянная во время обработки информация, но в целом все живо. И только в самом конце, после завершения обработки, я преобразовал изображение в 8-битный вид для печати и размещения в Интернете.
Я попробовал проделать те же операции над 8-битным вариантом изображения. Сравните гистограммы:
Даже если вы не понимаете, что такое , все равно понятно, что в «дырявой» гистограмме информации меньше, а соответствующая ей картинка выглядит хуже.
Похоже, больше половины информации в 8-битном изображении утрачено в процессе редактирования. А визуально – на картинке появились ступенчатые переходы в области неба – там, где должны быть плавные тональные переходы.
Как получить16-битное изображение?
16-битное изображение от фотоаппарата можно получить только если вы снимаете в формате RAW .
RAW-файл вы пропускаете через специальную программу-конвертер (поставляемую в комплекте с фотоаппаратом, такую как DPP или Nikon Capture , или от независимого разработчика, такую как Capture One или Raw Shooter ; кстати, фотошоп тоже умеет это делать). Программа-конвертер делает из RAW-файла 16-битный файл в формате TIFF, который вы можете обрабатывать в фотошопе.
Как быть тем, у кого камера не имеет режима съемки в RAW?
Отчасти помочь может преобразование 8-битного изображения в 16-битный режим в фотошопе (Image>Mode>16 Bit/Channel). Это самое первое, что следует сделать, открыв фото в фотошопе. Конечно, такая операция не сделает вашу фотографию по-настоящему 16-битной. Но все-таки файл станет более эластичным и устойчивым к потере информации при обработке.
Какие минусы есть у 16-битного изображения?
Во-первых, как уже было сказано, получить 16-битное изображение можно только из RAW-файла . (Ну, еще можно сделать 16-битный эрзац в фотошопе, как было сказано чуть выше). В любом случае – это дополнительный геморрой. Кстати, RAW-файл вы, скорее всего, не можете просмотреть никакой утилитой Windows. При хранении и сортировке фотографий на компьютере это добавляет дополнительное неудобство.
Во-вторых, 16-битные файлы имеют вдвое больший размер , чем 8-битные. Это значит, что они занимают больше места на диске. Ну, и RAW-файл тоже «весит» прилично, поэтому на карточку памяти в фотоаппарате поместится в несколько раз меньше снимков.
В-третьих, некоторые функции или фильтры фотошопа не работают в 16-битном режиме (чем более ранняя версия фотошопа, тем больше функций не работает). Поэтому если у вас есть какой-то привычный порядок операций при работе в фотошопе, его придется изменить. Часть операций надо будет делать в 16-битном режиме, а оставшуюся часть (которая недоступна в 16-битном режиме) – в 8-битном режиме.
В-четвертых, при обработке 16-битных файлов фотошоп может тормозить (иногда – о-очень сильно тормозить). Это раздражает. Не менее раздражает то, что в 16-битном режиме часто не хватает места на рабочем диске, где фотошоп держит свой кэш. Приходится прерывать работу и срочно что-нибудь удалять с этого диска, чтобы фотошоп мог продолжить работу.
Это не бог весть какие критические трудности, но имейте их в виду и не жалуйтесь, что я вас не предупреждал
Практические выводы
Максимально качественную картинку можно подготовить только из 16-битного файла. Это не означает, что из любого 16-битного файла можно сделать шедевр. Это всего лишь означает, что 8-битное изображение будет выглядеть еще хуже. Или гораздо хуже.
Снимайте не просто в режиме RAW, а в режиме RAW+JPEG. Тогда у вас к каждому файлу в дурацком формате RAW будет JPEG-дубль. Вам будет гораздо проще ориентироваться в файлах - просматривать, сортировать, удалять, дарить. Правда, за это вы заплатите лишним пространством на карточке памяти.
Если вы не собираетесь особо обрабатывать серию фотографий, смело можете использовать 8-битный режим (и снимать их не в формате RAW, а в JPEG).
Кроме этого последнего случая, всегда желательно снимать в режиме RAW и обрабатывать в 16-битном режиме.
Посетите практически любой форум по фотографии, и вы непременно наткнетесь на дискуссию относительно преимуществ RAW и JPEG файлов. Одна из причин, по которой некоторые фотографы предпочитают формат RAW - это бóльшая глубина бита (глубина цвета)*, содержащаяся в файле. Это позволяет вам получать фотографии большего технического качества, чем те, что вы можете получить из файла JPEG.
*Bit depth (глубина бита), или Color depth (глубина цвета, в русском языке чаще используется именно это определение) - количество бит, используемых для представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксель (англ. bits per pixel, bpp). Wikipedia
Что такое глубина цвета?
Компьютеры (и устройства, которые управляются встроенными компьютерами, такие как цифровые SLR-камеры) используют двоичную систему исчисления. Двоичная нумерация состоит из двух цифр - 1 и 0 (в отличие от десятичной системы исчисления, включающей 10 цифр). Одна цифра в двоичной системе исчисления называется «бит» (англ. «bit», сокращенно от «binary digit», «двоичная цифра»).
Восьмибитное число в двоичной системе выглядит так: 10110001 (эквивалентно 177 в десятичной системе). Таблица ниже демонстрирует, как это работает.
Максимально возможное восьмибитное число - это 11111111 - или 255 в десятичном варианте. Это значимая цифра для фотографов, поскольку она возникает во многих программах для обработки изображений, а также в старых дисплеях.
Цифровая съемка
Каждый из миллионов пикселей на цифровой фотографии соответствует элементу (также называемому «пиксель», англ. «pixel») на сенсоре (сенсорная матрица) камеры. Эти элементы при попадании на них света генерируют слабый электрический ток, измеряемый камерой и записывающийся в JPEG или RAW файл.
Файлы JPEG
Файлы JPEG записывают информацию о цвете и яркости для каждого пикселя тремя восьмиразрядными числами, по одному числу для красного, зеленого и синего каналов (эти цветовые каналы такие же, как те, что вы видите при построении цветовой гистограммы в Photoshop или на вашей камере).
Каждый восьмибитный канал записывает цвет по шкале 0-255, предоставляя теоретический максимум в 16,777,216 оттенках (256 x 256 x 256). Человеческий глаз может различать приблизительно около 10-12 миллионов цветов, так что это число обеспечивает более чем удовлетворительное количество информации для отображения любого объекта.
Этот градиент был сохранен в 24-битном файле (по 8 бит на каждый канал), что достаточно для передачи мягкой градации цветов.
Этот градиент был сохранен как 16-битный файл. Как вы можете видеть, 16 бит недостаточно для передачи мягкого градиента.
RAW файлы
RAW файлы присваивают больше бит каждому пикселю (большинство камер имеют 12 или 14-битные процессоры). Больше бит - больше числа, а, следовательно, больше тонов на каждый канал.
Это не приравнивается к большему количеству цветов - JPEG файлы уже могут записывать больше цветов, чем может воспринять человеческий глаз. Но каждый цвет сохраняется с гораздо более тонкой градацией тонов. В таком случае говорят, что изображение имеет большую глубину цвета. Таблица ниже иллюстрирует, как глубина бита приравнивается к количеству оттенков.
Обработка внутри камеры
Когда вы настраиваете камеру на запись фотографий в режиме JPEG, внутренний процессор камеры считывает информацию, полученную от сенсора в момент, когда вы делаете снимок, обрабатывает ее в соответствии с параметрами, выставленными в меню камеры (баланс белого, контраст, насыщенность цвета и т.д.), и записывает ее как 8-битный JPEG файл. Вся дополнительная информация, полученная сенсором, отбрасывается и теряется навсегда. В итоге, вы используете лишь 8 бит из 12 или 14 возможных, которые сенсор способен зафиксировать.
Постобработка
RAW файл отличается от JPEG тем, что содержит все данные, зафиксированные сенсором камеры за период экспонирования. Когда вы обрабатываете RAW файл, используя программное обеспечение для конвертации RAW, программа осуществляет преобразования, аналогичные тем, что производит внутренний процессор камеры, когда вы снимаете в JPEG. Различие состоит в том, что вы выставляете параметры внутри используемой программы, а те, что выставлены в меню камеры, игнорируются.
Выгода от дополнительной глубины бита RAW файла становится очевидной при постобработке. JPEG файл стоит использовать, если вы не собираетесь делать какую-либо постобработку и вам достаточно выставить экспозицию и все другие настройки во время съемки.
Однако, в реальности большинство из нас хочет внести хотя бы несколько исправлений, если это даже просто яркость и контраст. И это именно тот момент, когда JPEG файлы начинают уступать. С меньшим количеством информации на пиксель, когда вы проводите корректировку яркости, контраста или цветового баланса, оттенки могут визуально разделиться.
Результат наиболее очевиден в областях плавного и продолжительного перехода оттенков, таких как на голубом небе. Вместо мягкого градиента от светлого к темному, вы увидите расслоение на цветовые полосы. Этот эффект также известен как постеризация (англ. «posterisation»). Чем больше вы корректируете, тем сильнее он проявляется на изображении.
С файлом RAW, вы можете вносить гораздо более сильные изменения в оттенок цвета, яркость и контраст до того, как вы увидите снижение качества изображения. Это также позволяют сделать некоторые функции RAW-конвертера, такие как настройка баланса белого и восстановление «пересвеченных» областей (highlight recovery).
Это фото получено из JPEG файла. Даже при таком размере видны полосы в небе как результат постобработки.
При тщательном рассмотрении на небе виден эффект постеризации. Работа с 16-битным TIFF файлом может ликвидировать, или по крайней мере минимизировать, эффект полос.
16-битные TIFFфайлы
Когда вы обрабатываете RAW файл, ваше программное обеспечение предоставляет вам опцию по сохранению его как 8 или 16-битного файла. Если вы довольны обработкой и не хотите вносить еще какие-либо изменения, вы можете сохранить его как 8-битный файл. Вы не заметите никаких различий между файлом 8 бит и 16 бит на вашем мониторе или когда вы распечатаете изображение. Исключение - тот случай, когда у вас есть принтер, распознающий 16-битные файлы. В этом случае, из файла 16 бит вы можете получить лучший результат.
Однако если вы планируете осуществлять постобработку в Photoshop, тогда рекомендуется сохранять изображение как 16-битный файл. В этом случае изображение, полученное из 12 или 14-битного сенсора, будет «растянуто», чтобы заполнить 16-битный файл. После этого вы можете поработать над ним в Photoshop, зная, что дополнительная глубина цвета поможет вам достичь максимального качества.
Опять же, когда вы завершили процесс обработки, вы можете сохранить файл как 8-битный файл. Журналы, издатели книг и стоки (и практически любой клиент, покупающий фотографии), требуют 8-битные изображения. Файлы 16 бит могут потребоваться, только если вы (или кто-то другой) намереваетесь редактировать файл.
Это изображение, которое я получил, используя настройку RAW+JPEG на камере EOS 350D. Камера сохранила две версии файла - JPEG, обработанный процессором камеры, и RAW файл, содержащий всю информацию, записанную 12-битным сенсором камеры.
Здесь вы видите сравнение правого верхнего угла обработанного JPEG файла и RAW файла. Оба файла были созданы камерой с одной и той же настройкой экспозиции, и единственное различие между ними - это глубина цвета. Я смог «вытянуть» не различимые в JPEG «пересвеченные» детали в RAW файле. Если бы я хотел поработать над этим изображением дальше в Photoshop, я мог бы сохранить его как 16-битный файл TIFF, чтобы обеспечить максимально возможное качество изображения в течение процесса обработки.
Почему фотографы используют JPEG?
То, что не все профессиональные фотографы используют формат RAW все время, еще ничего не значит. Как свадебные, так и спортивные фотографы, например, зачастую работают именно с форматом JPEG.
Для свадебных фотографов, которые могут снять тысячи снимков на свадьбе, это экономит время на последующей обработке.
Спортивные фотографы используют JPEG файлы для того, чтобы иметь возможность отсылать фотографии своим графическим редакторам в течение мероприятия. В обоих случаях скорость, эффективность и меньший размер файлов формата JPEG делает использование этого типа файлов логичным.
Глубина цвета на компьютерных экранах
Глубина бита также относится к глубине цвета, которую компьютерные мониторы способны отображать. Читателю, использующему современные дисплеи, возможно, тяжело будет в это поверить, но компьютеры, которыми я пользовался в школе, могли воспроизводить только 2 цвета - белый и черный. «Must-have» компьютер того времени - Commodore 64, способный воспроизводить аж 16 цветов. В соответствии с информацией из «Википедии», было продано более 12 единиц этого компьютера.
Компьютер Commodore 64. Автор фотографии Билл Бертрам (Bill Bertram)
Несомненно, вы не сможете редактировать фотографии на машине с 16 цветами (64 Кб оперативной памяти в любом случае больше не потянут), и изобретение 24-битных дисплеев с реалистичным цветовоспроизведением - одна из вещей, которые сделали цифровую фотографию возможной. Дисплеи с реалистичным цветовоспроизведением, как и файлы JPEG, формируются при помощи трех цветов (красного, зеленого и синего), каждый с 256 оттенками, записанными в 8-битную цифру. Большинство современных мониторов используют либо 24-битные, либо 32-битные графические устройства с реалистичным цветовоспроизведением.
Файлы HDR
Многие из вас знают, что изображения с расширенным динамическим диапазоном (HDR) создаются путем комбинирования нескольких версий одного и того же изображения, снятого с разными настройками экспозиции. Но знаете ли вы, что программное обеспечение формирует 32-битное изображение с более чем 4 миллиардами тональных значений на каждый канал на пиксель - просто скачок по сравнению с 256 оттенками в файле JPEG.
Настоящие HDR файлы не могут быть корректно отображены на компьютерном мониторе или распечатанной странице. Вместо этого они урезаются до 8 или 16-битных файлов при помощи процесса, называемого тональная компрессия (англ. «tone-mapping»), который сохраняет характеристики оригинального изображения с расширенным динамическим диапазоном, но позволяет воспроизвести его на устройствах с узким динамическим диапазоном.
Заключение
Пиксели и биты - основные элементы для построения цифрового изображения. Если вы хотите получить максимально хорошее качество снимка на вашей камере, необходимо понимать концепцию глубины цвета и причины, по которым формат RAW позволяет получить изображение лучшего качества.
В растровых изображениях для их представления используется прямоугольная сетка из элементов изображения (пикселов). Каждому пикселу соответствует определенное расположение и значение цвета. При работе с растровыми изображениями редактируются пикселы, а не объекты или фигуры. Растровые изображения - самый распространенный способ передачи таких нерастрированных изображений, как фотографии или цифровые рисунки, поскольку он позволяет наиболее эффективно передавать тонкие градации цвета и тонов.
Растровые изображения зависят от разрешения, то есть они содержат фиксированное количество пикселов. При сильном увеличении на экране или при печати с разрешением ниже первоначального теряются детали, а края становятся неровными.
Пример растрового изображения с различной степенью увеличения
Иногда для хранения растровых изображений требуется много места на диске, поэтому для уменьшения размера файлов при использовании в некоторых компонентах Creative Suite такие изображения часто требуют сжатия. Например, перед импортом изображения в макет его сжимают в приложении, где оно было создано.
Примечание.
В Adobe Illustrator можно создавать графические растровые эффекты для рисунков с помощью эффектов и стилей графики.
Сведения о векторных изображениях
Векторные изображения (иногда называемые векторными фигурами или векторными объектами ) состоят из линий и кривых, заданных векторами - математическими объектами, которые описывают изображение в соответствии с его геометрическими характеристиками.
Векторные изображения можно свободно перемещать и изменять без потери детализации и четкости, поскольку такие изображения не зависят от разрешения. Их края остаются четкими при изменении размера, печати на принтере PostScript, сохранении в PDF-файле, а также при импорте в приложение для работы с векторной графикой. Таким образом, векторные изображения - это наилучший выбор для иллюстраций, которые выводятся на различные носители и размер которых приходится часто изменять, например логотипы.
В качестве примера векторных изображений можно привести объекты, которые создаются в Adobe Creative Suite инструментами рисования и инструментами фигур. С помощью команд копирования и вставки можно использовать одни и те же векторные объекты в различных компонентах Creative Suite .
Сочетание векторных и растровых изображений
При использовании в одном документе сочетания векторных и растровых изображений следует помнить, что изображение не всегда выглядит одинаково на экране и на конечном носителе (отпечатанное в типографии или на принтере либо опубликованное на веб-странице). На качество итогового изображения влияют следующие факторы:
Прозрачность
Многочисленные эффекты реализуются в изображениях с помощью частично прозрачных пикселов. Если изображение содержит прозрачные области, перед экспортом или печатью Photoshop выполняет процесс под названием сведение . В большинстве случаев процесс сведения по умолчанию работает превосходно. Но если изображение содержит сложные пересекающиеся области и должно быть выведено с высоким разрешением, то может потребоваться контрольный просмотр результатов сведения.
Разрешение изображения
Количество пикселов на дюйм (ppi) в растровом изображении. Использование слишком низкого разрешения при подготовке изображения для печати приводит к созданию черновика - изображения с крупными, похожими на пятна пикселами. Использование слишком высокого разрешения (когда размер пикселов меньше минимального размера точки, которая может быть воспроизведена устройством вывода) увеличивает размер файла без повышения качества итогового изображения и замедляет процесс печати.
Разрешение принтера и линиатура растра
Число точек на дюйм (dpi) и число линий на дюйм (lpi) в полутоновом растре. Соотношение между разрешением изображения, разрешением принтера и линиатурой растра определяет качество детализации отпечатанного изображения.
Цветовые каналы
Каждое изображение Photoshop содержит один или несколько каналов , каждый из которых хранит информацию о цветовых элементах изображения. Число используемых по умолчанию цветовых каналов изображения зависит от цветового режима. По умолчанию изображения в битовом режиме, режиме градаций серого, режиме дуотона и режиме индексированных цветов содержат один канал, изображения в режимах RGB и Lab содержат по три канала, а изображениях в режиме CMYK - четыре канала. Каналы можно добавлять в изображения всех типов, за исключением битовых. Дополнительные сведения см. в разделе Цветовые режимы .
Каналы цветных изображений являются в действительности полутоновыми изображениями, каждое из которых представляет отдельный цветовой компонент изображения. Например, изображение в режиме RGB содержит отдельные каналы для красного, зеленого и синего цветов.
Помимо цветовых каналов, в изображение можно включить альфа-каналы , которые используются в качестве масок для сохранения и редактирования выделений, а также каналы смесевой краски, которые используются для добавления смесевых цветов при печати. Для получения дополнительной информации см. раздел Основные сведения о каналах .
Битовая глубина
Битовая глубина определяет количество информации о цвете, доступное для каждого пиксела изображения. Чем больше битов информации о цвете выделено на каждый пиксел, тем больше количество доступных цветов и точнее их отображение. Например, изображение с битовой глубиной 1 содержит пикселы с двумя возможными значениями цветов: черным и белым. Изображение с битовой глубиной 8 может содержать 2 8 или 256 различных значений цвета. Изображения в режиме градаций серого с битовой глубиной 8 могут содержать 256 различных значений серого цвета.
RGB-изображения составлены их трех цветовых каналов. RGB-изображение c битовой глубиной 8 может содержать 256 различных значений для каждого канала, то есть всего может быть представлено более 16 миллионов цветовых значений. RGB-изображения с 8-битными каналами иногда называют 24-битными изображениями (8 бит x 3 канала = 24 бита данных на каждый пиксел).
На сегодняшний день технологии и устройства позволяют сделать настолько яркое и насыщенное изображение, что оно будет даже красивее, чем его реальный прототип. Качество передаваемого изображения зависит сразу от нескольких показателей: количества мегапикселей, разрешения изображения, его формата и так далее. К ним относится еще одно свойство - глубина цвета. Что же это такое, и как его определять и исчислять?
Общие сведения
Глубина цвета - это максимальное число оттенков цвета, которое только может содержать в себе изображение. Это количество измеряется в битах (число двоичных бит, определяющих цвет каждого пикселя и оттенка в изображении). К примеру, один пиксель, глубина цвета которого равна 1 бит, может принимать два значения: белый и черный. И чем большее значение будет иметь глубина цвета, тем многообразнее будет изображение, включающее в себя множество цветов и оттенков. Также она отвечает за точность передачи изображения. Тут все обстоит аналогичным образом: чем выше, тем лучше. Еще один пример: рисунок формата GIF с глубиной цвета, равной 8 битам, будет содержать в себе 256 цветов, в то время как изображение формата JPEG с глубиной 24 бита будет включать в себя 16 миллионов цветов.
Немного об RGB и CMYK
Как правило, все изображения данных форматов имеют глубину цвета, равную 8 битам на один канал (цветовой). Но ведь в изображении может присутствовать и несколько цветовых каналов. Тогда уже рисунок RGB с тремя каналами будет иметь глубину 24 бита (3х8). Глубина цвета изображений CMYK может достигать 32 бит (4х8).
Еще немного битов
Глубина цвета - количество оттенков одного цвета, которое устройство, контактирующее с изображениями, способно воспроизвести или создать. Данный параметр отвечает за плавность перехода оттенков в изображениях. Все цифровые изображения кодируются посредством единиц и нулей. Ноль - единица - белый. Хранятся и содержатся они в памяти, измеряющейся в байтах. Один байт содержит в себе 8 бит, в которых и обозначается глубина цвета. Для фотоаппаратов существует еще одно определение -глубина цвета матрицы. Это показатель, определяющий то, насколько полные и глубокие изображения в плане оттенков и цветов способен производить фотоаппарат, а точнее его матрица. Благодаря высокому значению данного параметра фотографии получаются объемными и плавными.
Разрешение
Связующим звеном между глубиной цвета и качеством изображения является его разрешение. Например, 32-битное изображение с разрешением 800х600 будет значительно хуже, чем аналогичное с 1440х900. Ведь во втором случае задействовано гораздо большее количество пикселей. В этом довольно легко убедиться самостоятельно. Все, что нужно сделать - это зайти на ПК в "настройки изображения" и попробовать последовательно уменьшать или увеличивать В ходе этого процесса вы наглядно убедитесь в том, насколько сильно разрешение влияет на качество передаваемой картинки. Независимо от того, сколько цветов включает в себя то или иное изображение, оно будет ограничено максимальным значением, которое способен поддерживать монитор. В качестве примера можно взять монитор с глубиной цвета 16 бит и изображение с 32 битами. Данное изображение на таком мониторе будет показываться с глубиной цвета 16 бит.