Цифровой осциллограф с анализатором спектра MDO3052. Генератор сигналов произвольной формы и стандартных функций

Цифровой осциллограф с анализатором спектра MDO3052. Генератор сигналов произвольной формы и стандартных функций

КРАТКОЕ ОПИСАНИЕ

Комбинированный осциллограф (6 в 1) серии Tektronix MDO3000 - это прибор, который очень полезен при проектировании и отладке современных комплексных электронных систем. Этот осциллограф объединяет в себе шесть приборов: , , , , и . Осциллограф серии MDO3000 можно конфигурировать под собственные задачи и обновлять в процессе эксплуатации. Предусмотрена возможность добавления функций, которые необходимы в данный момент или могут понадобиться позже. Полное описание всех характеристик Вы можете скачать ниже на этой странице в разделе .

Основные характеристики:
100 МГц, 2,5 Гвыб/с, 2 канала + анализатор спектра 9 кГц – 100 МГц (модель MDO3012).
100 МГц, 2,5 Гвыб/с, 4 канала + анализатор спектра 9 кГц – 100 МГц (модель MDO3014).
200 МГц, 2,5 Гвыб/с, 2 канала + анализатор спектра 9 кГц – 200 МГц (модель MDO3022).
200 МГц, 2,5 Гвыб/с, 4 канала + анализатор спектра 9 кГц – 200 МГц (модель MDO3024).
350 МГц, 2,5 Гвыб/с, 2 канала + анализатор спектра 9 кГц – 350 МГц (модель MDO3032).
350 МГц, 2,5 Гвыб/с, 4 канала + анализатор спектра 9 кГц – 350 МГц (модель MDO3034).
500 МГц, 2,5 Гвыб/с, 2 канала + анализатор спектра 9 кГц – 500 МГц (модель MDO3052).
500 МГц, 2,5 Гвыб/с, 4 канала + анализатор спектра 9 кГц – 500 МГц (модель MDO3054).
1 ГГц, 5 Гвыб/с, 2 канала + анализатор спектра 9 кГц – 1 ГГц (модель MDO3102).
1 ГГц, 5 Гвыб/с, 4 канала + анализатор спектра 9 кГц – 1 ГГц (модель MDO3104).
Длина записи: 10 млн. точек на канал.
Вертикальное разрешение: 8 бит (11 бит в режиме высокого разрешения).
Чувствительность: от 1 мВ/дел до 10 В/дел с калиброванной точной настройкой.
Скорость непрерывного захвата осциллограмм: до 280 000 осциллограмм/с .
Встроенный цифровой вольтметр и частотомер (входит в стандартную комплектацию).
Встроенный анализатор спектра : расширение полосы частот анализатора спектра до 9 кГц - 3 ГГц (опция MDO3SA). разрешение (RBW): 20 Гц – 150 МГц (с шагом 1-2-3-5), амплитуда: от +20 дБм до -148 дБм, погрешность амплитуды: ±0,6 дБ, встроенный предусилитель (стандартно), шумы (DANL): -148 дБм, фазовый шум на частоте 1 ГГц при отстройке от несущей на 100 кГц: -97 дБн/Гц.
Дополнительные опции : встроенный генератор стандартных и произвольных сигналов, встроенный логический анализатор на 16 цифровых каналов, анализатор протоколов: I2C, SPI, RS-232/422/485/UART, USB 2.0, CAN, LIN, FlexRay, MILSTD-1553, аудиошины и другие.
Экран 22,9 см (разрешение 800 x 480). Интерфейсы: USB, Ethernet, внешний монитор XGA.
Масса: 4,2 кг. Габариты: 203 x 417 x 147 мм. Рабочая температура: от -10°С до +55°С.
Незаменимый инструмент при проектировании, отладке и ремонте современных комплексных электронных систем

Видеообзор комбинированных осциллографов Tektronix серии MDO3000

Посмотрите этот небольшой видеосюжет, чтобы увидеть сильные стороны осциллографов Tektronix MDO3000, благодаря которым Вы сможете значительно ускорить и упростить процесс разработки электронных устройств, а также их обслуживание и ремонт.

Краткий видеообзор возможностей комбинированных осциллографов Tektronix серии MDO3000.

ПОДРОБНОЕ ОПИСАНИЕ

Комбинированный осциллограф серии Tektronix MDO3000 - это прибор, который может быть очень полезен при проектировании и отладке современных комплексных электронных систем. Модели этой серии объединяют в себе шесть приборов: осциллограф, анализатор спектра, генератор сигналов произвольной формы и стандартных функций, логический анализатор, анализатор протоколов и цифровой вольтметр + частотомер. Как это реализовано, Вы сможете увидеть в этом сюжете:

Tektronix MDO3000 включает 6 базовых приборов, необходимых при разработке,
производстве и ремонте электроники.

При покупке приборов серии Tektronix MDO3000 можно выбрать недорогую модель с базовым функционалом и наращивать возможности уже в процессе эксплуатации путём установки программных опций-ключей. В любое время после покупки, могут быть добавлены такие возможности: увеличение верхней частоты анализатора спектра до 3 ГГц, увеличение верхней частоты осциллографа до 200, 350 или 500 МГц, генератор сигналов, 16 цифровых каналов, модули анализаторов цифровых шин и др. Ниже приводится краткое описание каждого из приборов, которые могут входить в состав MDO3000.

Профессиональный цифровой осциллограф

Осциллограф серии MDO3000 - это осциллограф высокого класса (от 100 МГц до 1 ГГц) с разнообразными функциями для ускорения каждого этапа отладки: от быстрого обнаружения и захвата аномалий до поиска в записи осциллограммы интересующих событий, анализа характеристик событий и поведения исследуемого устройства. Осциллографы этой серии содержат множество инновационных функций, одной из которых является технология цифрового фосфора DPO , существенно упрощающая поиск различных аномалий электрических сигналов.

Полоса пропускания осциллографа серии MDO3000 может быть увеличена после покупки прибора . Каждая опция обновления позволяет увеличивать аналоговую полосу пропускания и диапазон частот анализатора спектра. Опции для увеличения полосы пропускания приобретаются с учетом текущей и требуемой полос пропускания. Непосредственно у владельца прибора, полоса пропускания может быть увеличена до 500 МГц. Для увеличения полосы пропускания прибора до 1 ГГц обратитесь в сервисный центр компании Tektronix.

Обнаружение неисправности устройства - это лишь первый шаг. Теперь нужно захватить интересующее событие, чтобы установить причину его возникновения. В осциллографе серии MDO3000 предусмотрено более 125 комбинаций запуска, обеспечивающих полный набор вариантов для ускорения поиска интересующего события. Запуск может осуществляться по ранту, логической комбинации, длительности импульса/глитча, нарушению времени установки и времени удержания, последовательным пакетам и данным параллельной шины. Благодаря длине записи до 10 млн. точек, можно захватывать сразу несколько интересующих событий и даже тысячи последовательных пакетов с сохранением высокого разрешения, позволяющего детально рассматривать мельчайшие подробности сигнала.

Большая длина записи позволяет при одном захвате получать тысячи экранов информации. С помощью панели управления Wave Inspector, представляющей лучшее в отрасли средство навигации и автоматического поиска, интересующие события можно находить за считанные секунды.

Панель управления Wave Inspector обеспечивает непревзойденную эффективность просмотра, навигации и анализа данных. Поворачивая внешнюю ручку панорамирования (1), можно пролистать все точки записи. Перемещение из начала в конец займёт считанные секунды. А если вы увидели что-то интересное и хотите подробнее это рассмотреть? Просто поверните внутреннюю ручку масштабирования (2).

Для того, чтобы проверить соответствие технических характеристик исследуемого устройства требуемым нормам и убедиться в том, что оно способно решать поставленные перед ним задачи, необходимо проанализировать все режимы работы этого устройства. Данная задача может потребовать самых разнообразных измерений - от простой проверки времени нарастания и длительности импульсов до сложного анализа вносимого затухания и исследования источников шумов. Осциллографы Tektronix серии MDO3000 предлагают всеобъемлющий набор встроенных средств анализа, включая привязанные к сигналу и экрану курсоры, автоматизированные измерения, расширенный набор математических функций, в том числе редактор уравнений, построение гистограмм, быстрое преобразование Фурье и диаграммы трендов для визуального определения изменений результатов со временем.

Гистограммы сигнала дают визуальное представление об изменении сигналов во времени. Горизонтальные гистограммы сигнала полезны для анализа джиттера в синхросигнале и распределения джиттера. Вертикальные гистограммы используются для анализа шума в синхросигнале и распределения шума. На основе измерений гистограмм, полученных с помощью Tektronix MDO3000, получают аналитическую информацию о распределении гистограммы сигнала, позволяющую точно определять ширину распределения, среднеквадратическое отклонение, среднее значение и другие значения.

Гистограмма сигнала, построенная по положительному перепаду импульса, помогает оценить распределение положения перепада (джиттер) во времени. На экране Tektronix MDO3000 отображаются числовые значения результатов измерений, полученные на основе гистограммы.

Встроенный анализатор спектра (входит в стандартную комплектацию)

Осциллограф серии MDO3000 - это первый осциллограф в своем классе, который содержит профессиональный анализатор спектра. Каждый осциллограф этой серии содержит анализатор спектра, работающий в диапазоне частот от 9 кГц до верхней границы полосы пропускания данной модели. Диапазон частот анализатора спектра любой модели можно расширить до 3 ГГц (опция MDO3SA), чтобы выполнять анализ спектра сигналов большинства стандартов беспроводной связи.

При использовании радиочастотного входа анализатора спектра, дисплей осциллографа серии MDO3000 переходит в режим полноэкранного отображения сигналов в частотной области. Все основные параметры спектра, такие как центральная частота, полоса обзора, опорный уровень и полоса разрешения, настраиваются легко и быстро с помощью специальных кнопок меню на передней панели и клавиатуры.

При этом исследуемый сигнал подаётся на отдельный вход анализатора спектра (с импедансом 50 Ом), расположенный на передней панели прибора.

Осциллографы серии MDO3000 позволяют отображать спектры в виде спектрограммы, которая является идеальным средством для отслеживания медленно изменяющихся событий в РЧ сигналах. По оси X откладываются значения частоты (как на обычном графике представления спектра), по оси Y – время, а цветом обозначается амплитуда.

Tektronix MDO3000 в режиме спектрограммы отображает медленно изменяющиеся события в РЧ сигналах. На данном рисунке показан сигнал с несколькими пиками. Изменения во времени значений частоты и амплитуды этих пиков легко отслеживаются на спектрограмме.

Осциллографы Tektronix серии MDO3000 позволяют проводить три вида автоматизированных РЧ измерений: измерение мощности сигнала в канале, коэффициента мощности соседнего канала и ширины занимаемой полосы частот. При активации какого-либо из этих режимов измерений, осциллограф автоматически включает режим отображения спектра и метод детектирования «Усреднение» («Average») для оптимизации результатов измерений.

Встроенный в осциллографы Tektronix MDO3000 полноценный анализатор спектра значительно расширяет область полезного применения этого прибора. Так как многие современные устройства содержат радиотракт, Вам необходимо проводить измерения не только в области времени, но и в частотной области. При этом, традиционные решения на базе FFT мало полезны, так как имеют очень низкую чувствительность. В этом видеосюжете наглядно показано применения встроенного в MDO3000 анализатора спектра.

Видеообзор встроенного анализатора спектра осциллографов Tektronix MDO3000.

Посмотрите этот видеосюжет, чтобы увидеть основные преимущества сверхширокой полосы захвата (до 3 ГГц) анализатора спектра, который входит в состав комбинированного осциллографа Tektronix MDO3000. По сравнению с большинством других анализаторов спектра, полоса захвата которых составляет от 10 до 30 МГц, возможности MDO3000 по обнаружению непостоянных сигналов значительно шире.

Видеообзор преимуществ сверхширокой полосы захвата (до 3 ГГц) встроенного анализатора спектра осциллографов Tektronix MDO3000.

Генератор сигналов произвольной формы и стандартных функций (опция)

Осциллограф серии MDO3000 содержит опциональный встроенный генератор сигналов произвольной формы и стандартных функций (опция MDO3AFG), идеальный для имитации сигналов датчика в процессе отладки и для добавления шума к полезным сигналам для моделирования неблагоприятных условий. Встроенный генератор сигналов произвольной формы и стандартных функций выдает сигналы с частотой до 50 МГц, в частности синусоидальные, прямоугольные, пилообразные и импульсные сигналы, постоянный ток, шум, сигналы функций кардинального синуса (Sinc), Гаусса и Лоренца, экспоненциального подъема и спада, гаверсинуса и кардиосигнал.

Tektronix MDO3000 в режиме выбора типа сигнала встроенного генератора сигналов
произвольной формы и стандартных функций.

Память генератора сигналов произвольной формы составляет до 128 000 точек. В нее можно записать сигнал с аналогового входа, из сохраненного внутреннего файла, со съемного накопителя USB большой емкости или с внешнего компьютера. Будучи записанным в редактируемую память генератора, сигнал может быть модифицирован с помощью экранного редактора, а затем подан на выход генератора. Осциллограф серии MDO3000 совместим с ПО ArbExpress Tektronix, позволяющим быстро и легко создавать и редактировать сложные сигналы на внешнем компьютере. Чтобы генератор выдавал требуемый сигнал, файл с сигналом нужно передать в редактируемую память осциллографа серии MDO3000 через интерфейс USB, LAN или с использованием съемного накопителя USB большой емкости.

Tektronix MDO3000 в режиме редактора для поточечного редактирования
сигналов произвольной формы.

Логический анализатор на 16 каналов (опция)

Логический анализатор (опция MDO3MSO) обеспечивает 16 цифровых каналов, интегрированных в интерфейс пользователя осциллографа. Это упрощает работу и облегчает решение проблем при работе с сигналами в разных областях.

Анализатор протоколов с запуском по сигналам последовательных шин (опция)

Сигнал последовательной шины содержит, как правило, адрес, управляющую информацию, данные и тактовую частоту, что затрудняет интерпретацию изображения на экране осциллографа и выделение интересующих событий. Автоматический запуск, декодирование и поиск событий и условий в сигналах, передаваемых по последовательной шине, создают надежный набор средств отладки последовательных шин. При наличии соответствующей опции, приборы серии MDO3000 могут автоматически выполнять захват, декодирование и анализ последовательных протоколов передачи данных: I2C, SPI, RS-232/422/485/UART, USB 2.0, CAN, LIN, FlexRay, MILSTD-1553, аудиошин и других.

Tektronix MDO3000 в режиме запуска по конкретному пакету данных, проходящему по шине I2C. Желтая осциллограмма представляет собой сигнал тактовой частоты, а синяя – данные. Осциллограмма сигнала шины показывает декодированное содержимое пакета,
включая Старт, Адрес, Чтение/Запись, Данные и Стоп.

В этом видеосюжете показана работа встроенного анализатора протоколов для декодирования и поиска событий в сигналах, передаваемых по последовательной шине SPI . Аналогичным образом выполняется декодировка и других протоколов передачи данных: I2C, RS-232/422/485/UART, USB 2.0, CAN, LIN, FlexRay, MILSTD-1553, аудиошин и пр.

Видеообзор встроенного анализатора протоколов, который входит в состав комбинированного осциллографа Tektronix MDO3000.

Цифровой вольтметр и частотомер (бесплатно при регистрации прибора)

Осциллограф MDO3000 содержит встроенные 4-разрядный цифровой вольтметр и 5-разрядный частотомер. Сигнал с любого аналогового входа осциллографа может быть подан на вольтметр без переключения пробников. Результаты измерения динамически отображаются на дисплее в цифровой и графической форме. На дисплее также отображаются минимальное, максимальное и среднее измеренные значения и диапазон значений, измеренных в течение предыдущего 5-секундного интервала. Цифровой вольтметр и частотомер есть во всех моделях серии MDO3000 и активируются при регистрации прибора.

Tektronix MDO3000 в режиме цифрового вольтметра. Результаты измерения в течение 5-секундного интервала представлены с указанием минимального, максимального и среднего значений постоянного напряжения. Показана также частота сигнала.

Опции и аксессуары для комбинированных осциллографов Tektronix серии MDO3000

Основные опции:
- опция MDO3SA (расширение полосы частот анализатора спектра любой модели до 9 кГц - 3 ГГц)
- опция MDO3AFG (генератор для создания 13 стандартных сигналов, а также произвольных сигналов)
- опция MDO3MSO (логический анализатор на 16 цифровых каналов, в комплекте с цифровым пробником P6316 и принадлежностями)
- дополнительные опции анализатора протоколов для декодирования и анализа последовательных шин: I2C, SPI, RS-232/422/485/UART, USB 2.0, CAN, LIN, FlexRay, MILSTD-1553, аудиошины и другие.

Полный перечень опций и аксессуаров для MDO3000 включает до сотни различных наименований. Подробную информацию по опциям, пробникам и пр. смотрите на этой странице в разделе .

Документация

Эта документация в формате PDF содержит наиболее полное описание возможностей осциллографов серии Tektronix MDO3000, их технических характеристик и режимов работы:

Описание и характеристики осциллографов Tektronix MDO3000 (на русском) (39 стр.; 3 МБ)

Руководство по эксплуатации осциллографов Tektronix MDO3000 (на русском) (278 стр.; 6 МБ)

А здесь можно найти наши советы и другую полезную информацию по этой теме:

Как быстро выбрать осциллограф - критерии выбора, типовые применения и популярные модели

Технология цифрового люминофора DPO в осциллографах - принцип работы, примеры применения

Сравнительная таблица основных характеристик цифровых осциллографов

Пассивные пробники напряжения для осциллографов

Здравствуйте. Предлагаю обзор конструктора для самостоятельной сборки осциллографа-частотомера начального уровня DSO062 с алгоритмом БПФ (Быстрого преобразования Фурье).
Быстрое преобразование Фурье (FFT) - это математическая функция, позволяющая получить из временной зависимости сигнала его частотные компоненты, т.е. проводить спектральный анализ сигналов.
Конструктор достаточно прост, поэтому его можно рекомендовать самым начинающим радиолюбителям.
В обзоре постараюсь подробно описать все этапы сборки и проиллюстрировать их фотографиями.
Эх, если бы мне такой конструктор в детстве достался, когда я ходил в радиокужок, я был бы счастлив…

Для начала заглянем в Википедию:

Осцилло́граф (лат. oscillo - качаюсь + греч. γραφω - пишу) - прибор, предназначенный для исследования (наблюдения, записи, измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране, либо записываемого на фотоленте.

Изначально осциллографы были механическими, потом электронно-лучевыми, а теперь стали цифровыми.
Осциллограф для радиолюбителя, это как тестер для электрика, это как бинокль для военного, это как микроскоп для биолога… Эту цепочку можно продолжать до бесконечности. Поэтому пора переходить к обзору.

Характеристики:

Характеристики, конечно, весьма скромные, говорящие о том, что этот прибор не может являться измерительным инструментом, а только лишь демонстрационным прибором для знакомства и получения начальных навыков. Однако этот прибор может похвастаться функцией частотомера и спектроанализатора. Ещё можно отметить возможность сохранения «снимков экрана» в память с возможностью передачи их на компьютер.

Упаковка и комплектация:

Упаковка самая бюджетная - полиэтиленовый пакет.

Как видно из фото, бо́льшая часть элементов уже смонтирована на печатной плате, осталось припаять: 1 диод, 6 конденсаторов, 1 индуктивность, 1 стабилизатор, 2 разъёма, 9 кнопок, 1 ЖК индикатор. Также в комплекте радиатор, стоечки, винтики и кабель.
В комплекте 3 куска стеклотекстолита, 2 из которых это передняя и задняя панели, а вот средняя - печатная плата с элементами:




Как я уже писал выше, на печатной плате уже смонтированы SMD элементы (элементы поверхностного монтажа). Печатная плата имеет защитную лаковую маску зелёного цвета (т.н. «зелёнку») и маркировку шелкографией. Плата плохо отмыта, т.к. если присмотреться, видны мелкие «шарики» припоя:
В комплекте есть ещё одна печатная плата в составе ЖК индикатора:

Для начала необходимо «скачать» архив с документацией и руководством по монтажу. Документы все на английском языке.
Рассмотрим схему прибора поблочно.

Стабилизатор +5 вольт:

Преобразователь собран на микросхеме линейного стабилизатора напряжения 7805. По паспорту на вход этого стабилизатора и можно подавать до 30 вольт, но делать этого нельзя, т.к. в схеме используется не только выходное напряжение +5 Вольт, но и входное VRAV+ из которого позднее делается негативное напряжение для питания операционных усилителей. На выходе стабилизатора стоит разомкнутая с завода перемычка JP1 которую нужно будет замкнуть после того, как будут спаяны все необходимые элементы и напряжение на выходе будет равно 5 Вольт. Т.е. это такая «защита от дурака».

Источник двуполярного питания:

Для питания операционных усилителей, установленных во входной аналоговой части необходимо двуполярное питание, т.е. "+" и "-" относительно ноля источника питания. В качестве источника положительной полярности используется входное напряжение +9 Вольт, которое фильтруется от помех индуктивностью L3 и конденсатором С18.
Для получения отрицательного напряжения используется ЭДС самоиндукции индуктивности L2, которая выпрямляется диодом D7 и сглаживается фильтром C14-L1-C15.

Входная аналоговая часть:

Аналоговая входная часть собрана на операционных усилителях и . В этой части также установлены переключатели для выбора диапазона входных значений.

Аналого-цифровой преобразователь (АЦП):

Сигнал с выхода аналоговой части подаётся на 8-ми битный параллельный АЦП TLC5510. С помощью этого АЦП аналоговый сигнал преобразуется в цифровой с дискретностью 8 бит, т.е. 256 значений

Микроконтроллер:

«Мозгом» данного осциллографа является AVR-микроконтроллер , который получает цифровое значение входного сигнала, осуществляет необходимые математические преобразования и выдаёт данные на ЖК экран. Параллельно со своей основной задачей этот микроконтроллер выдаёт тестовый сигнал 500 Гц, а также импульсы VGEN для источника отрицательной полярности.

ЖК дисплей:

Для вывода изображения используется ЖК дисплей , представляющий из себя монохромную матрицу 128х64 точки. Интерфейс с микроконтроллером - параллельный 8-ми битный. С помощью переменного резистора POT1 производится регулировка контрастности изображения.

Сборка:

Ознакомившись с основными узлами пора переходить к сборке.
Для начала предлагается проверить полярность запаянных диодов D7 и D1:
Проверяем:

Диоды запаяны верно.

Шаг 1: Установка диода D3

Диод в комплекте всего 1, перепутать сложно. Серая полоса это «катод», т.е. "-". Устанавливаем и паяем как нарисовано на плате.

Шаг 2: Установка электролитических конденсаторов

Конденсаторов в комплекте 6 штук: 1 на 470 мкФ (побольше) и 5 на 100 мкФ (поменьше). Перепутать тоже сложно. У конденсаторов промаркирован на корпусе отрицательный контакт "-". Паяем как указано на плате.

Шаг 3: Установка индуктивности L2

Индуктивность только одна, полярности у нее нет, поэтому паяем как получится.

Шаг 4: Установка разъёма J4

Данный 2 рядный 10 контактный разъём служит для программирования микроконтроллера, который уже запрограммирован, поэтому если не предполагается производить его перепрограммирование, то и разъём паять не обязательно.

Шаги 5 и 6: Установка разъёмов J5 и J6 (или J1)

J5 это разъём питания. J6 (или J1, какой в комплекте) это разъём входного сигнала. Паяются в свои места. В связи с тем, что у разъёмов толстые выводы, паять нужно аккуратно, чтобы не перегреть их корпуса.

Шаг 7: Установка тестового сигнального «терминала» J8

Здесь предлагается сделать петельку из откушенного вывода диода или конденсатора и запаять таким образом (к этой петельке позднее нужно будет подключаться входным «крокодилом» для проверки работоспособности):

Шаг 8: Установка стабилизатора с радиатором

Сначала необходимо отформовать выводы микросхемы стабилизатора 7805, прикрутить его к радиатору и корпусу, и только потом паять.

Шаг 9: Проверка напряжения питания 5 Вольт

Сейчас необходимо на разъём питания подать 9-12 вольт постоянного тока, согласно полярности и измерить напряжение на контрольной точке TP5. Напряжение должно соответствовать 5 вольтам.
Если всё в порядке, то можно переходить к следующему шагу, а если нет, то необходимо перепроверить установку элементов (диод, стабилизатор).

Шаг 10: Установка перемычки JP1.

Перемычка JP1 это «защита от дурака». Сделано это для того, чтобы не «спалить» все остальные элементы при неправильном монтаже. Но раз мы дошли до этого шага, значит смонтировано всё верно и перемычку можно устанавливать. Делается она тоже из обрезка вывода.
Т.к. дальше следует паять кнопки и переключатели, то предварительно я рекомендую отмыть плату от флюса. Позднее это нужно будет делать гораздо аккуратнее, чтобы не намочить элементы управления. Отмывать можно спиртом или спиртобензиновой смесью. Я мою изопропиловым спиртом.

Шаги 11 и 12: Установка кнопок и переключателей

В руководстве рекомендуется запаять кнопки сначала только по диагонали, т.е. не по 4 а по 2 ножки в каждой, потом примерить лицевую панель и отрегулировать глубину установки кнопок, чтобы они хорошо нажимались. Реально получилось так, что из-за чрезмерной длины кнопок, усадив их максимально глубоко, всё равно пришлось подкладывать под стойки шайбы, чтобы немного приподнять переднюю панель. Т.е. паяем все кнопки максимально близко к плате.

Шаг 13: Установка ЖК-индикатора

Для начала нужно напаять на плату ЖК индикатора однорядную 20-ти пиновую линейку. Но нужно не перепутать и запаять там, где отверстия подписаны. С другой стороны запаять 2 двухпиновых кусочка:
Паять нужно так, чтобы пины были перпендикулярно плате. После этого попробовать посадить плату ЖК дисплея на основную и убедиться, что выводы запаянных элементов не достают до платы дисплея. Если всё в порядке, пропаять обратные стороны пинов со стороны основной платы.
И теперь самое время убрать остатки флюса, но уже более аккуратно. Я для этого использую ватные палочки смоченные в изопропиловом спирте.

Первое включение:

Осциллограф спаян, отмыт от остатков флюса, произведён тщательный осмотр всех контактов на предмет «непропая» или «соплей», и если всё в порядке, подаём питание:
Экран засветился и даже что-то показывает. На самом деле сначала у меня изображения не было никакого. Экран светился зелёным цветом и всё. Но после регулировки контрастности переменным резистором POT1 всё стало на место.
Следующий этап сборка и тестирование.

Сборка:

В сборке нет ничего сложного. В комплекте присутствуют 8 стоек (4 коротких и 4 длинных). В углах всех плат предусмотрены отверстия для стоек. Короткие устанавливаются со стороны ЖК экрана и кнопок, т.е. с передней, а длинные с задней.
Передняя и задняя панели к стойкам крепятся 8-ю винтиками, которые также находятся в комплекте. Перед установкой передней панели, на кнопки необходимо надеть колпачки. Чтобы кнопки нормально нажимались мне пришлось подложить по одной шайбе между каждой стойкой и передней панелью. Вот что получилось:



Питание:

В качестве источника питания производитель предлагает использовать любой источник с напряжением до 12 вольт постоянного или переменного тока. Дело в том, что на входе стоит диод, который защищает прибор от переполюсовки, а также играет роль однополупериудного выпрямителя. Ток потребления заявлен как "<200 мА". Проверим:
Да, ток потребления составил 113 мА. В связи с тем, что используется линейный стабилизатор напряжения, ток не будет существенно меняться при изменении питающего напряжения. Т.е. что при 9 вольтах, что при 12 ток практически одинаков. Только во втором случае радиатор стабилизатора нагревается сильнее.
Для подключения питания необходимо отдельно приобрести вот такой разъём:
Сто́ит 15 рублей.
Либо использовать источник питания уже с необходимым разъёмом ("+" должен быть внутри, "-" снаружи). У меня оказался в наличии такой источник:

Органы управления:

«Пройдёмся» по органам управления. В наличии 3 переключателя и 9 кнопок. Начнём с переключателей:
AC/DC/Freq - переключатель типа входа. «АС» - измерение переменного тока, происходит «отсекание» постоянной составляющей. «DC» - измерение постоянного тока с учетом постоянной составляющей сигнала. «Freq» - режим измерения частоты (частотомер).
GND/1V/0.1V и «x5/x2/x1» - эти 2 переключателя регулируют чувствительность, т.е. величину по оси «Y». Первым переключателем выбирается базовая величина, а вторым множитель. Результат получается перемножением выбранных величин. Например первый переключатель установлен в «0.1V», а второй в «х2», результат в этом случае получится: 0.2 вольта на клетку.
Теперь кнопки:
SEC/DIV - Изменение «частоты развёртки», т.е. времени по оси «Х». При нажатии на кнопку подсвечивается соответствующий значок на экране и дальше можно производить изменение величины «времени на клетку» кнопками [+] и [-] .
V.POS - Выбор изменения вертикальной позиции. При нажатии на кнопку подсвечивается соответствующий значок на экране и дальше можно производить сдвиг по вертикали кнопками [+] и [-] .
H.POS - Выбор изменения горизонтальной позиции. При нажатии на кнопку подсвечивается соответствующий значок на экране и дальше можно производить сдвиг по вертикали кнопками [+] и [-] .
MODE - Выбор режима синхронизации. При нажатии на кнопку подсвечивается соответствующий значок на экране и дальше можно производить изменение режима синхронизации кнопками [+] и [-] .
SLOPE - Изменение полярности синхронизации. При нажатии на кнопку подсвечивается соответствующий значок на экране и дальше можно производить изменение полярности синхронизации кнопками [+] и [-] .
LEVEL - Выбор уровня синхронизации. При нажатии на кнопку подсвечивается соответствующий значок на экране и дальше можно производить изменение уровня синхронизации кнопками [+] и [-] . При последующих нажатиях на LEVEL производится выбор «внутренней» или «внешней» синхронизации, а также включение или выключение выхода синхронизации.
OK - «Замораживание» экрана. Т.е. при нажатии на кнопку появляется надпись «HOLD» и изображение перестаёт меняться. Повторное нажатие возвращает в обычный режим.

Тестирование:

Для начала подключим вход осциллографа к выходу тестового сигнала J8. Там должен быть меандр с частотой 500 Гц и амплитудой 5 Вольт. Смотрим:
Выбраны режимы «1 вольт на клетку» и «0,5 мсек на клетку». Амплитуда около 5 клеток, т.е. 5 вольт, период 4 клетки, т.е. 2 мсек. Переводим период в частоту f=1/T=1/0,002=500 Гц. Всё верно. Параллельно я подключил мультиметр в режиме измерения частоты. Показания также совпали.
Идём дальше, генератора сигналов у меня нет, поэтому будем обходиться подручными средствами. Посмотрим частоту и форму сигнала с выхода обычного сетевого трансформатора:
Синусоида с частотой 50 Гц.
Далее я собрал простейший генератор на микросхеме таймера . К выходу получившегося генератора подключим исследуемый осциллограф и ISDS205C.
Дальше поэкспериментируем с формой сигнала, для чего на выход подключим R-C цепочку 2кОм-5нФ:
Увеличим ёмкость до 1 мкФ, но и снизим частоту:
Формы сигналов похожи, частоты тоже.

Режим БПФ (FFT):

БПФ или по английски FFT это . Не вдаваясь в подробности эта функция даёт пользователю возможность с помощью осциллографа проводить анализа сигнала не только во временной, но и в частотной области. Этот алгоритм особенно полезен когда нужно провести спектральный анализ, но специализированных приборов типа анализаторов спектра нет. При этом надо четко представлять, что осциллограф это прежде всего, осциллограф, а не средство измерения частотного спектра, хотя у него и есть такая возможность. Поэтому метрологические характеристики осциллографов в режиме БПФ не нормируются.
В режим БПФ и обратно осциллограф переключается длительным нажатием (3 секунды) на кнопку MODE . Кнопкой HPOS можно выбирать количество точек для БПФ: 256 или 512. Кнопками [+] [-] можно менять частоту дискретизации.
Для тестирования этого режима подключим вход осциллографа к выходу внутреннего тестового генератора:
Частота генератора равна 500 Гц, можно видеть максимальный уровень сигнала именно на этой частоте, и дальше наблюдать затухающие гармоники на частотах 1500 Гц, 2500 Гц, 3500 Гц и т.д.

Сохранение снимка экрана:

Сделать снимок экрана и сохранить можно либо во внутреннюю энергонезависимую память (до 6 снимков), либо передать в виде BMP файла на компьютер. Сделать это можно следующим образом:

Сохранение во внутреннюю память:
1) «Заморозить» экран кнопкой (состояние HOLD).
2) Нажать и используя [+] или [-] выбрать 1 из 6 ячеек памяти.
3) Нажать для записи «замороженного» экрана в выбранную ячейку.

Просмотр сохранённых экранов:
1) Войти в режим HOLD нажатием кнопки .
2) Нажать и используя [+] или [-] выбрать 1 из 6 ячеек памяти.
3) Нажать для вывода на экран изображения из выбранной ячейки.

Передача снимка экрана на компьютер.
Для начала необходимо осциллограф подключить к компьютеру через последовательный порт. Я для этого использовал преобразователь USB-COM c TTL уровнями подключив его к разъёму J5:
Далее на компьютере необходимо запустить программу, которая поддерживает приём данных по протоколу Xmodem . На WinXP это HyperTerminal. На Win7 и старше HyperTerminal-а нет. Чем пользоваться - затрудняюсь ответить. Мне повезло, что как раз в наличии был старый ноутбук с WinXP. При приёме данных необходимо выбрать следующие параметры порта: 38400bps, 8 data bits, 1 stop bit, no parity, no flow control .
Выбрать имя файла с расширением BMP и нажать «ожидание приёма».
В это время осциллограф перевести в состояние HOLD кнопкой , нажать и далее . В это время должна начаться передача файла. Вот что у меня получилось:

Итоги:

Ну что же, пора заканчивать и подводить итоги.

Простота сборки, доступно даже самым начинающим радиолюбителям;
+ Прибор «3 в 1»: осциллограф, частотомер, анализатор спектра;
+ Возможность сохранения «скринов» в память и на компьютер;
+ Качество изготовления;
+ Подробное описание процесса сборки и поиска неисправностей.

Низкое разрешение ЖК дисплея и его монохромность;
- Скромные характеристики (частота дискретизации всего 2 МГц, чтобы исследовать форму сигнала нужно хотя бы 10 точек на период, следовательно максимальная частота входного сигнала находится в районе 200 кГц).

Как я писал в начале обзора: «Эх, если бы мне такой конструктор в детстве достался, когда я ходил в радиокужок, я был бы счастлив...», и это правда. Конструктор очень хорош для получения начальных навыков работы с осциллографом, частотомером, анализатором спектра. С помощью этого прибора можно производить наладку простейших электронных схем, не смотря на то, что это игрушка в бо́льшей степени, чем измерительный прибор. Зачем я его заказал? Да просто стало интересно. Решил показать и рассказать что это и «как его едят».
Надеюсь обзор будет полезен. Если я увижу, что подобные обзоры представляют интерес для читателей, то буду и дальше заказывать разные конструкторы.

Удачи!!!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +51 Добавить в избранное Обзор понравился +73 +123
Госреестр:
57757-14

Комбинированный цифровой осциллограф Tektronix MDO3052 является высокоэффективным инструментом для проектирования и отладки комплексных радиоэлектронных систем. Осциллограф цифровой Tektronix MDO3052 объединяет в себе шесть приборов: анализатор спектра, генератор сигналов произвольной формы и стандартных функций, логический анализатор, анализатор протоколов и цифровой вольтметр/частотомер. Осциллограф цифровой Tektronix MDO3052 можно конфигурировать под собственные задачи и обновлять. Предусмотрена возможность добавления функций и выбора характеристик, которые необходимы в данный момент или могут понадобиться позже. Разнообразие функций, заложенных в цифровом осциллографе Tektronix MDO3052, позволяет ускорить каждый этап отладки – от быстрого обнаружения и захвата аномалий до поиска в записи осциллограммы интересующих событий, анализа характеристик событий и поведения исследуемого устройства.

Основные технические характеристики

  • Осциллограф
    • Модели с 2 и 4 аналоговыми каналами
    • Модели с полосой пропускания 1 ГГц, 500 МГц, 350 МГц, 200 МГц и 100 МГц
    • Полоса пропускания может быть расширена (до 1 ГГц)
    • Частота дискретизации до 5 Гвыб./с
    • Длина записи 10 млн. точек во всех каналах
    • Максимальная скорость захвата сигнала >280 000 осциллограмм в секунду
    • Стандартные пассивные пробники напряжения с входной емкостью 3,9 пФ и аналоговой полосой пропускания 1 ГГц, 500 МГц или 250 МГц
  • Анализатор спектра
    • Диапазон частот
      • В стандартной конфигурации: от 9 кГц до верхней границы полосы пропускания осциллографа
      • Опция: от 9 кГц до 3 ГГц
    • Сверхширокая полоса захвата до 3 ГГц
  • Генерация сигналов произвольной формы и стандартных функций (опционально)
    • 13 предварительно заданных форм сигнала
    • генерация сигналов с частотой 50 МГц
    • Длина записи 128 000 точек
    • Частота дискретизации генератора сигналов произвольной формы 250 Mвыб./с
  • Логический анализатор (опциональный)
    • 16 цифровых каналов
    • Длина записи 10 млн. точек по всем каналам
    • Разрешение по времени 121,2 пс
  • Анализатор протоколов (опциональный)
    • Поддерживаются стандарты последовательных шин: I 2 C, SPI, RS-232/422/485/UART, USB 2.0, CAN, LIN, FlexRay, MIL-STD-1553 и аудиошины
  • Цифровой вольтметр (бесплатно при регистрации прибора)
    • Измерения ср.кв. перем. и пост. напряжения, ср.кв. перем. напряжения с постоянной составляющей с разрешением 4 разряда
    • Измерения частоты с разрешением 5 разрядов

Возможности и преимущества

  • Высокая скорость захвата сигналов в режиме FastAcq™ позволяет быстро находить трудноуловимые аномалии сигналов
  • Панель управления Wave Inspector® облегчает навигацию и автоматизирует поиск данных сигнала
  • 33 автоматизированных измерения и гистограммы сигнала для упрощенного анализа сигнала
  • Интерфейс пробников TekVPI® поддерживает активные, дифференциальные и токовые пробники с автоматическим выбором диапазона и единиц измерения
  • Широкоэкранный цветной дисплей с диагональю 9 дюймов (229 мм)
  • Небольшие размеры и масса – всего 147 мм в глубину и масса 4,2 кг
  • Анализ спектра
    • Специализированные органы управления на передней панели для самых распространённых задач
    • Автоматические пиковые маркеры для определения частоты и амплитуды пиков спектра
    • Ручные маркеры для измерения непиковых параметров сигнала
    • Используемые типы трасс: нормальная, усреднение, удержание максимума, удержание минимума
    • Режим отображения спектрограмм облегчает визуальный контроль и анализ медленно изменяющихся событий
    • Автоматизированные измерения: измерение мощности сигнала в канале, коэффициента развязки соседних каналов по мощности и занимаемой полосы частот
  • Генерация сигналов произвольной формы и стандартных функций
    • Генерация заданных сигналов для быстрой имитации устройств при разработке систем
    • Захват сигналов по аналоговым или цифровым входам, передача захваченных сигналов в память для редактирования и выдача отредактированных сигналов
    • Добавление шума к любому сигналу для тестирования в неблагоприятных условиях
  • Разработка и тестирование систем со смешанными сигналами
    • Автоматический запуск, декодирование и поиск сигналов параллельных шин
    • Многоканальный запуск по времени установки и удержания
    • Режим высокоскоростного захвата MagniVu™ обеспечивает разрешение по времени 121,2 пс для цифровых каналов
  • Анализ протоколов
    • Запуск, декодирование и автоматический поиск содержимого пакетов наиболее распространенных стандартов последовательных шин при разработке встраиваемых систем.
    • Экспорт таблиц декодирования протоколов, используемых при документировании результатов
  • Цифровой вольтметр и частотомер
    • Быстрая визуальная проверка измеренных значений напряжения и частоты
    • Графическое представление информации о стабильности измерения
  • Возможность полного обновления
    • Добавление функциональных возможностей, увеличение полосы пропускания осциллографа или диапазона частот анализатора спектра в соответствии с вашими требованиями или бюджетом.

Технические характеристики

Приведенные характеристики относятся ко всем моделям, если не указано иное.

Параметр
MDO3052
Число аналоговых каналов 2
Аналоговая полоса пропускания 500 МГц
Время нарастания
(скорость развертки 10 мВ/дел. при входной нагрузке 50 Ом)
800 пс
Частота дискретизации (1 канал) 2,5 Гвыб./с
Частота дискретизации (2 канала) 2,5 Гвыб./с
Частота дискретизации (4 канала) -
Длина записи (1 канал) 10 млн. точек
Длина записи (2 канала) 10 млн. точек
Длина записи (4 канала) -
Цифровые каналы с опцией MDO3MSO 16
Выходные сигналы генератора сигналов произвольной формы и стандартных функций с опцией MDO3AFG 1
Число каналов анализатор спектра 1
Стандартный диапазон частот анализатора спектра от 9 кГц до 500 МГц
Диапазон частот анализатора спектра с опцией MDO3SA от 9 кГц до 3 ГГц
Система вертикального отклонения аналоговых каналов
Аппаратное ограничение полосы пропускания Для моделей с полосой пропускания ≥350 МГц 20 МГц или 250 МГц Для моделей с полосой пропускания 100 МГц и 200 МГц 20 МГц Режимы входа перем. ток, пост. ток Входное сопротивление 1 МОм ±1%, 50 Ом ±1%, 75 Ом ±1%; 75 Ом отсутствует в моделях с полосой пропускания 1 ГГц Диапазон входной чувствительности 1 МОм от 1 мВ/дел. до 10 В/дел. 50 Ом, 75 Ом от 1 мВ/дел. до 1 В/дел. Разрешение по вертикали 8 бит (11 бит в режиме высокого разрешения) 1 МОм 50 Ом, 75 Ом 5 В ср. кв. с пиковыми значениями ≤ ±20 В Погрешность усиления постоянного напряжения ±1,5% при чувствительности не менее 5 мВ/дел., увеличивается со скоростью 0,10%/°C при температуре выше 30 °C

±2,0% при чувствительности 2 мВ/дел., увеличивается со скоростью 0,10 %/°C при температуре выше 30 °C

±2,5% при чувствительности 1 мВ/дел., увеличивается со скоростью 0,10 %/°C при температуре выше 30 °C

±3,0% при переменном коэффициенте усиления, увеличивается со скоростью 0,10 %/°C при температуре выше 30 °C

Развязка между каналами Для двух любых каналов с одинаковой чувствительностью по вертикали – ≥100:1 на частоте ≤100 МГц и ≥30:1 на частоте от 100 МГц до верхней границы полосы пропускания Диапазон смещения
Система вертикального отклонения цифровых каналов

(требуется опция MDO3MSO)

Число входных каналов 16 цифровых каналов (D15 – D0) Пороги Общая настройка для группы из 8 каналов Выбор значений порогов ТТЛ, КМОП, ЭСЛ, псевдо-ЭСЛ, определяется пользователем Диапазон значений порогов, настраиваемых пользователем от -15 В до +25 В Максимальное входное напряжение от -20 до +30 В Погрешность установки порога ±(100 мВ + 3% от установленного порога) Максимальный динамический диапазон входного сигнала 50 В пик.-пик. (зависит от установленного порога) Минимальный размах напряжения 500 мВ Входное сопротивление 101 кОм Входная емкость пробника 8 пФ Разрешение по вертикали 1 бит
Система горизонтального отклонения аналоговых каналов
Диапазон скорости развертки от 400 пс/дел. до 1000 с/дел. от 1 нс/дел. до 1000 с/дел. Максимальная продолжительность захвата при максимальной частоте дискретизации (все каналы/половина каналов) Модели с полосой пропускания 1 ГГц 4/2 мс Модели с полосой пропускания ≤500 МГц 4/4 мс Диапазон задержки развертки от -10 делений до 5000 с Диапазон компенсации сдвига фаз между каналами ±125 нс Погрешность генератора развертки ±10 х 10 -6 в любом интервале ≥1 мс
Система горизонтального отклонения цифровых каналов

(требуется опция MDO3MSO)

Максимальная частота дискретизации (основной режим) 500 Мвыб./с (разрешение 2 нс) Максимальная длина записи (основной режим) 10 млн. точек Максимальная частота дискретизации (режим MagniVu) 8,25 Гвыб./с (разрешение 121,2 пс) Максимальная длина записи (режим MagniVu) 10 000 точек с центрированием относительно точки запуска Минимальная обнаруживаемая длительность импульса (тип.) 2 нс Сдвиг фаз между каналами (тип.) 500 пс Максимальная частота переключения входа 250 МГц (Максимальная частота синусоидального сигнала, точно воспроизводимого в виде меандра. Необходим короткий удлинитель земли в каждом канале. Это максимальная частота при минимальной амплитуде сигнала. При больших амплитудах можно получить большую частоту переключения.)
Вход анализатора спектра
Полоса захвата модели MDO3012, MDO3014: 100 МГц

модели MDO3022, MDO3024: 200 МГц

модели MDO3032, MDO3034: 350 МГц

модели MDO3052, MDO3054: 500 МГц

модели MDO3102, MDO3104: 1 ГГц

Все модели: 3 ГГц с опцией MDO3SA

Span MDO3012, MDO3014 models: 9 kHz – 100 MHz

MDO3022, MDO3024 models: 9 kHz – 200 MHz

MDO3032, MDO3034 models: 9 kHz – 350 MHz

MDO3052, MDO3054 models: 9 kHz – 500 MHz

MDO3102, MDO3104 models: 9 kHz – 1 GHz

All models: 9 kHz – 3 GHz with option MDO3SA, in a 1-2-5 sequence

< -78 дБм (опорный уровень ≤ -15 дБм, нагрузка 50 Ом на РЧ входе)

На частоте 2,5 ГГц <-67 дБм На частоте 1,25 ГГц <-76 дБм Перекрёстные помехи в анализаторе спектра от каналов осциллографа частота на входе ≤800 МГц: < -60 дБ относительно опорного уровня (тип.) частота на входе от >800 МГц до 2 ГГц: < -40 дБ относительно опорного уровня (тип.) Фазовый шум на частоте 1 ГГц (немодулированный сигнал) 10 кГц < -81 дБн/Гц (< -85 дБн/Гц, тип.) 100 кГц < -97 дБн/Гц (< -101 дБн/Гц, тип.) 1 МГц < -118 дБн/Гц (< -122 дБн/Гц, тип.) Погрешность измерения уровня Опорный уровень от 10 дБм до -15 дБм. Входной уровень изменяется от опорного уровня на 40 дБм в сторону уменьшения. Спецификации без учета погрешности рассогласования. от +18 до +28 °C < ±1,2 дБм (< ±0,6 дБм, тип.) < ±2,0 дБм Погрешность измерения уровня при подключенном предусилителе TPA-N-PRE Режим предусилителя установлен на “Auto” (Автом.). От установленного опорного уровня 10 дБм до -40 дБм. Входной уровень изменяется от опорного уровня на 30 дБм в сторону уменьшения. Спецификации без учета погрешности рассогласования. от +18 до +28 °C < ±1,5 дБм (тип.) при любом состоянии предусилителя Выход за пределы рабочего диапазона < ±2,3 дБм (тип.) при любом состоянии предусилителя Погрешность измерения частоты ±(([погрешность опорной частоты] x [Частота маркера]) + (полоса обзора/750 + 2)) Гц; погрешность опорной частоты = 10х10-6 (10 Гц/МГц) Максимальный рабочий уровень входного сигнала +20 дБм (0,1 Вт) ±40 В пост.тока +33 дБм (2 Вт) <10 мкс, скважности <1 % и опорном уровене ≥ +10 дБм Максимальный рабочий входной уровень при подключенном предусилителе TPA-N-PRE Средняя долговременная мощность +20 дБм (0,1 Вт) Максимальный безопасный уровень постоянного напряжения ±20 В пост.тока Максимальная безопасная мощность (немодулир. сигнал) +30 дБм (1 Вт) Максимальная безопасная мощность (импульс) +45 дБм (32 Вт) при длительности импульса <10 мкс, скважности <1 %, опорном уровене ≥ +10 дБм Типы трасс в частотной области нормальная, усреднение, удержание максимума, удержание минимума Методы обнаружения положительный пик, отрицательный пик, усреднение, выборка Автоматические маркеры Идентификация от 1 до 11 пиков на основе значений регулируемого пользователем порога и двойного размаха. Ручные маркеры Два ручных маркера используются для индикации частоты, амплитуды, плотности шума и фазового шума Маркеры Считывание показаний в режиме "Absolute" или "Delta" Окна БПФ
Параметры запуска
Режимы запуска Автоматический, обычный и однократный Режим входа запуска Связь по постоянному току, по переменному току, ФНЧ (подавление частоты <50 кГц), подавление шума (снижение чувствительности) Диапазон задержки запуска от 20 нс до 8 с Чувствительность запуска (тип.) По перепаду импульса, связь по пост. току Диапазоны уровней запуска Любой входной канал ±8 делений от центра экрана, ±8 делений от 0 В, если выбран вход с ФНЧ Вспомогательный вход (внешний) ±8 В Сеть питания Фиксированный уровень, приблизительно 50 % от напряжения сети Индикация частоты сигнала запуска Шестиразрядный частотомер для сигнала запуска. Типы запуска По перепаду По положительному перепаду, отрицательному или любому перепаду сигнала в любом канале. Возможна связь по постоянному току, переменному току, ФНЧ, ФВЧ и подавление шума Последовательность (B-триггер) Задержка запуска по времени: от 8 нс до 8 с. Или задержка запуска по событиям: от 1 до 4 000 000 событий. Задержка запуска по событиям отсутствует при выборе любого перепада ("Either"). Длительность импульса Запуск по положительным или отрицательным импульсам, длительность которых >, <, = или ≠ указанному значению или попадает в пределы или за пределы указанного диапазона. Время ожидания Запуск, если в течение указанного периода времени (от 4 нс до 8 с) не обнаружено ни одного события изменения уровня. Рант Запуск по импульсу, который пересек один порог, но не пересек второй порог перед повторным пересечением первого. Логическое выражение Запуск в том случае, если некоторое логическое выражение состояния каналов принимает значение «Ложь» или сохраняет значение «Истина» в течение указанного времени. Любой из входов можно использовать в качестве источника тактового сигнала, по перепаду которого проверяется логическое выражение. Логические значения (И, ИЛИ, И-НЕ, ИЛИ-НЕ), указанные для всех входных каналов, определяются как Высокое, Низкое или Безразлично. Установка и удержание Запуск по нарушениям времени установки и времени удержания между сигналом тактовой частоты и появлением данных на любом из входных каналов.
Запуск по времени установки и времени удержания Описание
Диапазон времени установки от -0,5 нс до 1,024 мс
Диапазон времени удержания от 1,0 нс до 1,024 мс
Диапазон суммы времен установки и удержания от 0,5 нс до 2,048 мс
Время нарастания/спада Запуск по перепадам импульсов, которые короче или длиннее указанного значения. Перепад может быть положительным, отрицательным или любым в диапазоне от 4,0 нс до 8 с. По видеосигналу Запуск по всем строкам, нечетным, четным или всем полям видеосигналов стандартов NTSC, PAL и SECAM.

Запуск по видеосигналам 480p/60, 576p/50, 720p/30, 720p/50, 720p/60, 875i/60, 1080i/50, 1080i/60, 1080p/24, 1080p/24sF, 1080p/25, 1080p/30, 1080p/50, 1080p/60

и по специальным видеосигналам с двух- и трехуровневой синхронизацией.

I 2 C (опционально) Запуск по старту, повторному старту, стопу, пропущенному ACK, адресу (7 или 10 бит), данным или адресу и данным при передаче данных по шинам I 2 C со скоростью до 10 Мбит/с. SPI (опционально) Запуск по SS, MOSI, MISO или MOSI и MISO при передаче данных по шинам SPI со скоростью до 50,0 Мбит/с. RS-232/422/485/UART (опционально) Запуск по стартовому биту передачи, стартовому биту приема, концу передаваемого пакета, концу принимаемого пакета, передаваемым данным, принимаемым данным, ошибке четности передачи и ошибке четности приема со скоростью до 10 Мбит/с. USB: Низкоскоростная шина (опционально) Запуск по сигналу синхронизации, началу кадра, сбросу, паузе, возобновлению, концу пакета, маркерному пакету (адресу), пакету данных, пакету установки соединения, специальному пакету и по ошибке.

<, =, >

<, =, >

Запуск по специальному пакету – любой специальный тип, зарезервированный.

USB: Полноскоростная шина (опционально) Запуск по сигналу синхронизации, сбросу, паузе, возобновлению, концу пакета, маркерному пакету (адресу), пакету данных, пакету установки соединения, специальному пакету и по ошибке.

Запуск по маркерному пакету – любой тип маркера, SOF, OUT, IN, SETUP; адрес можно указать для типа маркеров: любой маркер, OUT, IN и SETUP. Можно определить запуск по адресу, который ≤, <, =, >, ≥, ≠ указанному значению или попадает в пределы или за пределы указанного диапазона. Номер кадра для маркера SOF можно вводить в двоичном, шестнадцатеричном, беззнаковом десятичном и безразличном формате.

Запуск по пакету данных – любой тип данных, DATA0, DATA1; можно определить запуск по данным, которые ≤, <, =, >, ≥, ≠ указанному значению или попадают в пределы или за пределы указанного диапазона.

Запуск по пакету установки соединения – любой тип установки соединения, ACK, NAK, STALL.

Запуск по специальному пакету – любой специальный тип, зарезервирован.

Запуск по ошибке – проверка PID, CRC5 или CRC16, вставка битов.

CAN (опционально) Запуск по началу кадра, типу кадра (данные, дистанционное управление, ошибка, перегрузка), идентификатору (стандартный или расширенный), данным, идентификатору и данным, концу кадра, пропущенному ACK или по ошибке вставки битов в сигналах шины CAN со скоростью до 1 Мбит/с.

Можно настроить запуск так, чтобы он выполнялся при соблюдении условия ≤, <, =, >, ≥ или ≠ для некоторого указанного значения. По умолчанию настраиваемая пользователем точка выборки устанавливается равной 50 %.

LIN (опционально) Запуск по синхросигналу, идентификатору, данным, идентификатору и данным, кадру активного режима, кадру неактивного режима и по ошибкам, таким как ошибки синхронизации, четности или контрольной суммы, при передаче данных со скоростью до 100 кбит/с (по определению LIN, 20 кбит/с). FlexRay (опционально) Запуск по началу кадра, типу кадра (нормальный, информационный, нулевой, синхронизирующий, стартовый), идентификатору, числу циклов, полю завершения заголовка, данным, идентификатору и данным, концу кадра или по ошибкам, таким как ошибка CRC заголовка, CRC трейлера, нулевого кадра, кадра синхронизации или стартового кадра при передаче данных со скоростью до 100 Мбит/с. MIL-STD-1553 (опционально) Запуск по синхросигналу, типу слова 1 Запуск по типу слова (команда, статус, данные), командному слову (заданные отдельно RT адрес, T/R, субадрес/режим, счётчик слов данных/код режима, чётность), слову статуса (заданные отдельно RT адрес, ошибка сообщения, оборудование, бит запроса на обслуживание, приём широковещательной команды, занятость, флаг подсистемы, принятие запроса динамического управления шиной (DBCA), флаг терминала, чётность), слову данных (задаваемое пользователем 16-битное значение), ошибке (синхросигнала, чётности, манчестерского кода, связности данных), времени ожидания (мин. время от 2 до 100 мкс, макс. время от 2 до 100 мкс; запуск осуществляется, если время меньше минимального, больше максимального, попадает или не попадает в диапазон).

Можно определить запуск по адресу, который ≤, <, =, >, ≥, ≠ указанному значению или попадает в пределы или за пределы указанного диапазона.

I 2 S/LJ/RJ/TDM (опционально) Запуск по выбранному слову, по синхросигналу кадра или по данным. Можно настроить запуск так, чтобы он выполнялся при соблюдении условия ≤, <, =, >, ≥ или ≠ для некоторого указанного значения или при попадании значения в пределы или за пределы указанного диапазона Максимальная скорость передачи данных для I 2 S/LJ/RJ равна 12,5 Мбит/с. Максимальная скорость передачи данных для TDM равна 25 Мбит/с. Запуск по параллельной шине (при наличии установленной опции MDO3MSO) Запуск по значениям данных на параллельной шине. Размер данных, передаваемых по параллельной шине, равен от 1 до 20 битов (от цифровых и аналоговых каналов). Поддерживаются двоичные и шестнадцатеричные числа.

1 При выборе запуска по командному слову будет происходить запуск по командным словам и неопределенным словам команды/статуса. При выборе запуска по слову статуса будет происходить запуск по статусу и неопределенным словам команды/статуса.

Система захвата данных
Режимы захвата данных Выборка Захват значений выборок Обнаружение пиковых значений Захват глитчей длительностью 1,5 нс (модели с полосой пропускания 1 ГГц), 2,0 нс (модели с полосой пропускания 500 МГц), 3,0 нс (модели с полосой пропускания 350 МГц), 5,0 нс (модели с полосой пропускания 200 МГц), 7,0 нс (модели с полосой пропускания 100 МГц) при всех скоростях свипирования. Усреднение Усреднение от 2 до 512 осциллограмм. Огибающая Огибающая минимумов-максимумов представляет данные, полученные в результате обнаружения пиковых значений в течение нескольких захватов. Число сигналов в огибающей выбирается от 1 до 2000 и бесконечности. Высокое разрешение Усреднение серии захватов в реальном времени уменьшает случайный шум и повышает разрешение по вертикали. Прокрутка Прокрутка осциллограммы по экрану справа налево со скоростью развертки, меньшей или равной 40 мс/дел. Режим захвата FastAcq™ Режим захвата FastAcq оптимизирует прибор для анализа динамических сигналов и захвата редких событий. В моделях с полосой пропускания 1 ГГц захватывается >280 000 осциллограмм/с, в моделях с полосой пропускания от 100 МГц до 500 МГц – >235 000 осциллограмм/с.
Измерение параметров сигнала
Курсоры Осциллограмма и экран Автоматизированные измерения (во временной области) Измеряется 30 параметров, до четырех из которых можно вывести на экран одновременно. Возможно измерение следующих параметров: период, частота, задержка, время нарастания, время спада, скважность положительных импульсов, скважность отрицательных импульсов, длительность положительного импульса, длительность отрицательного импульса, длительность пакета, фаза, положительный глитч, отрицательный глитч, значение от пика до пика, амплитуда, высокий уровень, низкий уровень, максимум, минимум, среднее значение, среднее по периоду, среднеквадратическое значение, среднеквадратическое по периоду, число положительных импульсов, число отрицательных импульсов, число положительных фронтов, число отрицательных фронтов, площадь и площадь периода. Автоматизированные измерения (в частотной области) 3 вида, результаты одного из которых могут быть отображены на экране. Возможно измерение следующих параметров: мощности сигнала в канале, коэффициента развязки соседних каналов по мощности и занимаемой полосы частот Статистическая обработка результатов Среднее значение, минимум, максимум, стандартное отклонение. Опорные уровни Определяемые пользователем опорные уровни для автоматизированных измерений можно указывать в процентах или в физических единицах. Стробирование Выделение конкретного события в захваченном сигнале для его измерения. Выполняется с помощью курсоров экрана или курсоров сигнала. Гистограмма Гистограмма представляет собой массив значений, отражающих полное число попаданий в заданную пользователем область экрана. Гистограмма выводится в виде графика распределения числа попаданий, а также в виде массива численных значений, которые можно измерять. Источники сигнала канал 1, канал 2, канал 3, канал 4, опорн. 1, опорн. 2, опорн. 3, опорн. 4, результат матем. операции Типы Вертикальная, горизонтальная Статистические параметры сигнала, получаемые на основе гистограммы 12 параметров, до четырех из которых можно вывести на экран одновременно. Число осциллограмм, число попаданий в прямоугольник, число пиковых значений, медиана, максимум, минимум, размах от пика до пика, среднее значение, стандартное отклонение, сигма 1, сигма 2, сигма 3.
Математическая обработка осциллограмм
Арифметические операции Сложение, вычитание, умножение и деление сигналов. Математические функции Интегрирование, дифференцирование, быстрое преобразование Фурье БПФ Амплитудный спектр. Выбор вертикального масштаба БПФ согласно линейному среднеквадратическому значению или среднеквадратическому значению в дБВ. Выбор окна БПФ: прямоугольное, Хемминга, Хеннинга или Блэкмана-Харриса. Математическая обработка спектра Сложение и вычитание трасс спектра в частотной области. Расширенные математические функции Возможно определение расширенных алгебраических выражений, включающих осциллограммы, опорные осциллограммы, математические функции (БПФ, интегрирование, дифференцирование, логарифм, экспонента, корень квадратный, модуль, синус, косинус, тангенс, радикал, степень), скалярные значения, до двух определяемых пользователем переменных и результаты параметрических измерений (период, частота, задержка, положительный фронт, отрицательный фронт, длительность положительного импульса, длительность отрицательного импульса, длительность пакета, фаза, скважность положительных импульсов, скважность отрицательных импульсов, положительный глитч, отрицательный глитч, размах глитчей, значение от пика до пика, амплитуда, среднеквадратическое значение, среднеквадратическое за период, высокий уровень, низкий уровень, максимум, минимум, среднее значение, среднее за период, площадь, площадь за период и графики тренда), например, (Intg(Ch1 - Mean(Ch1)) × 1,414 × VAR1).
Действие, выполняемое при обнаружении события
События Действия не выполняются при появлении запуска или после заданного числа захватов (от 1 до 1 000 000) Действия Прекращение захвата, запоминание осциллограммы в файле, сохранение снимка экрана, распечатка снимка экрана, выдача импульса с вспомогательного выхода AUX OUT, сигнал удаленного интерфейса SRQ, передача уведомлений по электронной почте и выдача визуального уведомления Повторение Повторение действия при обработке события (от 1 до 1 000 000 и бесконечности)
Режим просмотра видеоизображений
Источники сигнала Видеостандарты NTSC, PAL Контрастность и яркость Ручная и автоматическая Выбор поля видеосигнала Нечетное, четное, первое поле сигнала с чересстрочной разверткой Положение изображения на экране Возможность выбора положения изображения по координатам X и Y, регулировки ширины и высоты изображения и управления начальными строкой и пикселем и разностью между строками.
Измерение параметров источников питания (опционально)
Измерения показателей качества источника питания V ср.кв. , V пик-фактора, частота, I ср.кв. , I пик-фактора, активная мощность, кажущаяся мощность, реактивная мощность, коэффициент мощности, угол сдвига фаз. Измерение коммутационных потерь Потери мощности Потери энергии T вкл. , T выкл. , общая проводимость. Гармонические составляющие THD-F, THD-R, среднеквадратическое значение. Графическое и табличное представление гармоник. Тестирование согласно IEC61000-3-2, Класс A и MIL-STD-1399, раздел 300А Измерение пульсаций V пульсаций и I пульсаций. Анализ модуляции Графическое представление модуляции длительности положительного импульса, длительности отрицательного импульса, периода, частоты, скважности положительных и отрицательных импульсов. Область безопасной работы Графическое представление и тестирование по маске области безопасной работы импульсных силовых приборов. измерения dV/dt и dI/dt Измерение скорости нарастания напряжения и тока с помощью курсоров.
Тестирование по маске и контроль предельных значений (опционально)
Источник тестового сигнала Контроль предельных значений: любой из каналов 1 – 4, любой из опорн. R1 – R4

Тестирование по маске: любой из каналов 1 – 4

Создание маски Вертикальный допуск для контроля предельных значений от 0 до 1 деления с шагом 0,001 деления; горизонтальный допуск для контроля предельных значений от 0 до 0,5 деления с шагом 0,001 деления. Масштабирование маски Привязка к источнику включена (маска масштабируется автоматически при изменении настроек канала источника)

Привязка к источнику выключена (маска не масштабируется при изменении настроек канала источника)

Критерии останова теста Минимальное число осциллограмм (от 1 до 1 000 000 и бесконечности)

Минимальное прошедшее время (от 1 с до 48 час. и бесконечности)

Превышение порога от 1 до 1 000 000 и бесконечности Действия при неудачном завершении теста Прекращение захвата, запоминание осциллограммы в файле, сохранение снимка экрана, распечатка снимка экрана, выдача импульса с вспомогательного выхода AUX OUT, сигнал удаленного интерфейса SRQ Действия при удачном завершении теста Выдать импульс с вспомогательного выхода AUX OUT, настроить удаленный интерфейс SRQ Отображение результатов Состояние теста, общее число осциллограмм, число нарушений, общее число тестов, число неудачных тестов, прошедшее время, общее число попаданий в каждый сегмент маски
Генератор сигналов произвольной формы и стандартных функций

(требуется опция MDO3AFG)

Сигналы Синусоидальный, прямоугольный, импульсный, пилообразный, треугольный, кардинальный синус (Sinc), функция Гаусса, функция Лоренца, экспоненциальное нарастание и спад, гаверсинус, кардиосигнал и произвольный сигнал. Синусоидальный Диапазон частот от 0,1 Гц до 50 МГц Диапазон амплитуды от 20 мВ пик-пик до 5 В пик-пик в режиме с высоким импедансом; от 10 мВ пик-пик до 2,5 В пик-пик, нагрузка 50 Ом Неравномерность АЧХ ±0,5 дБ, тип., на частоте 1 кГц (±1,5 дБ для амплитуд <20 мВ пик-пик) Полный коэффициент гармоник (тип.) 1%, нагрузка 50 Ом

2% для амплитуды < 50 мВ и частот > 10 МГц

50 х 10-6 (частота ≥ 10 кГц)

Прямоугольный и импульсный сигналы 130 х 10-6 (частота < 10 кГц)

50 х 10-6 (частота ≥ 10 кГц)

Разрешение 0,1 Гц или 4 разряда; выбирается большее Погрешность амплитуды ±[ (1,5%от установленной амплитуды от пика до пика) + (1,5% от установленного постоянного смещения) + 1 мВ ] (частота = 1 кГц) Постоянное смещение Диапазон постоянного смещения ± в режиме с высоким импедансом; ±, нагрузка 50 Ом Разрешение постоянного смещения 1 мВ в режиме с высоким импедансом; 500 мкВ при входном сопротивлении 50 Ом Погрешность смещения ±[(1,5% от установленного абсолютного постоянного смещения) + 1 мВ]; увеличивается на 3 мВ при каждом повышении температуры на 10 °C, начиная от +25 °C ПО ArbExpress® Осциллограф серии MDO3000 совместим с ПО ArbExpress® для редактирования и создания сигналов, выполняемым в компьютере. Сигналы, захваченные осциллографом серии MDO3000, передаются ПО ArbExpress для редактирования. Это ПО создает сложные сигналы и подает их на генератор сигналов произвольной формы и стандартных функций, входящий в состав осциллографа и выдающий результирующие сигналы.
Цифровой вольтметр и частотомер
Источник канал 1, канал 2, канал 3 и канал 4 Типы измерений Среднеквадратическое значение переменной составляющей, постоянная составляющая, сумма постоянной составляющей и среднеквадратического значения переменной составляющей (показания в вольтах или амперах); частота Разрешение перем. напряжение, пост. напряжение: 4 разряда

Частота: 5 разрядов

Погрешность частоты 10-6 Скорость измерений 100 измерений/с; измерения на экране обновляются 4 раза в секунду Автоматический выбор параметров системы вертикального отклонения Автоматическая настройка параметров по вертикали для максимального динамического диапазона измерений; доступна для любого источника, не связанного с системой запуска Графическое представление результатов измерения Графическое отображение минимального, максимального и текущего значений и прокрутка значений в 5-секундном интервале
Программное обеспечение
ПО OpenChoice® Desktop Обеспечивает быстрое и простое взаимодействие осциллографа с компьютерами, работающими под управлением Windows, через интерфейс USB или LAN. Позволяет передавать и сохранять настройки, осциллограммы, результаты измерений и снимки экрана. В состав этого ПО входят панели инструментов Word и Excel, позволяющие автоматизировать захват и передачу данных и снимков экрана в Word и Excel для быстрого составления отчетов и дальнейшего анализа. Драйвер IVI Обеспечивает стандартный интерфейс программирования приборов для распространенных программных пакетов, таких как LabVIEW, LabWindows/CVI, Microsoft.NET и MATLAB. Веб-интерфейс e*Scope® Позволяет управлять осциллографом по сети через стандартный обозреватель интернета. Просто введите IP адрес или сетевое имя осциллографа, и в обозревателе откроется страница управления. Передайте и сохраните настройки, осциллограммы, измерения и снимки экрана или оперативно измените настройки осциллографа непосредственно на странице управления. Веб-интерфейс LXI Core 2011 Обеспечивает подключение к осциллографу через стандартный браузер путем ввода IP адреса или сетевого имени осциллографа в адресную строку браузера. Веб-интерфейс позволяет контролировать состояние и конфигурацию прибора, проверять и изменять настройки сети, а также управлять осциллографом с помощью ПО e*Scope®. Алгоритм работы интерфейса соответствует спецификациям LXI Core 2011, версия 1.4.
Характеристики дисплея
Тип дисплея цветной дисплей с диагональю 9 дюймов (229 мм) Разрешение дисплея 800 × 480 (WVGA) Интерполяция Кардинальный синус (Sinс) Представление сигналов Векторы, точки, переменное послесвечение, бесконечное послесвечение Цветовые палитры для режима захвата FastAcq Температурная, спектральная, нормальная, инвертированная Координатная сетка Полная, сетка, сплошная, перекрестие, рамка, IRE и мВ. Формат YT, XY и одновременно XY/YT Максимальная скорость захвата >280 000 осциллограмм/с в режиме FastAcq для моделей с полосой пропускания 1 ГГц

>235 000 осциллограмм/с в режиме FastAcq для моделей с полосой пропускания от 100 МГц до 500 МГц

>50 000 осциллограмм/с в режиме захвата с использованием осциллографа с цифровым люминофором для всех моделей

Порты ввода/вывода
Высокоскоростной хост-порт USB 2.0 Поддерживает USB накопители, принтеры и клавиатуру. По одному порту на передней и задней панелях прибора. Порт ведомого устройства USB 2.0 Расположен на задней панели. Поддерживает управление осциллографом через интерфейс USBTMC или GPIB (с переходником TEK-USB-488) и непосредственную печать на принтерах, совместимых с технологией PictBridge. Печать Для печати используется сетевой принтер, принтер, совместимый с технологией PictBridge, или принтер, поддерживающий печать сообщений электронной почты. Примечание: В принтере используется ПО, разработанное OpenSSL Project для использования в OpenSSL Toolkit. Порт LAN Розетка RJ-45, поддерживает стандарт 10/100/1000Base-T Выход видеосигнала Розетка DB-15, позволяет выводить изображение с экрана осциллографа на внешний монитор или проектор. Разрешение XGA Вспомогательный вход (только для 2-канальных моделей) Разъем BNC на передней панели Входное сопротивление, 1 МОм Максимальное входное напряжение 300 В ср. кв. (КАТ II) с пиковыми значениями ≤ ±425 В Напряжение и частота на выходе компенсатора пробника Контакты на передней панели Амплитуда от 0 до 2,5 В Частота Вспомогательный выход Разъем BNC на задней панели.

V OUT (высокий уровень): ≥2,5 В без нагрузки, ≥0,9 В с нагрузкой 50 Ом

V OUT (низкий уровень): ≤0,7 В при выходном токе ≤4 мА; ≤0,25 В с нагрузкой 50 Ом

Выход можно настроить на выдачу импульсного сигнала при запуске осциллографа, сигнала запуска от внутреннего генератора сигналов произвольной формы и стандартных функций, а также сигнала события для контроля предельных значений/тестирования по маске.

Замок Кенсингтона Гнездо на задней панели для стандартного замка Кенсингтона. Крепление VESA Стандартные точки крепления VESA 75 мм (MIS-D 100) на задней панели прибора
LXI (расширение LAN для измерительных приборов)
Класс LXI Core 2011 Версия V1.4
Источник питания
Напряжение источника питания от 100 до 240 В ±10 % Частота источника питания от 50 до 60 Гц, от 100 до 240 В

400 Гц ±10% при 115 В

Потребляемая мощность Не более 120 Вт
Габариты и масса
Размеры Высота 203,2 мм Ширина 416,6 мм Глубина 147,4 мм Масса Нетто 4,2 кг Брутто 8,6 кг Конфигурация для установки в стойку 5U Зазор для охлаждения 51 мм с левой и с задней сторон прибора
Электромагнитная совместимость, условия окружающей среды и безопасность
Температура Рабочая от -10 ºC до +55 ºC (от +14 ºF до 131 ºF) Хранение от -40 ºC до +71 ºC (от -40 ºF до 160 ºF) Относительная влажность Рабочая Температура до +40 ºC, относительная влажность от 5% до 90% Хранение Температура до +40 º, относительная влажность от 5% до 90%

Температура от +40 ºC до +55 ºC, относительная влажность от 5% до 60%

Температура от +55 ºC до +71 ºC, относительная влажность от 5% до 40%, без образования конденсата

Высота над уровнем моря Рабочая до 3000 м Хранение до 12 000 м Нормативные документы Электромагнитная совместимость Директива совета EC 2004/108/EC Безопасность UL61010-1:2004, CAN/CSA-C22.2 No. 61010.1: 2004, Директива по низковольтному оборудованию 2006/95/EC и EN61010-1:2001, МЭК 61010-1:2001, ANSI 61010-1-2004, ISA 82.02.01

Комплектация

Пробники

Модели с полосой пропускания 100 МГц, 200 МГц TPP0250, 250 МГц, 10X, 3,9 пФ. Один пассивный пробник напряжения на аналоговый канал Модели с полосой пропускания 350 МГц, 500 МГц TPP0500В, 500 МГц, 10X, 3,9 пФ. Один пассивный пробник напряжения на аналоговый канал Модели с полосой пропускания 1 ГГц TPP1000, 1 ГГц, 10X, 3,9 пФ. Один пассивный пробник напряжения на аналоговый канал Любая модель с опцией MDO3MSO Один 16-канальный логический пробник P6316 и принадлежности

Принадлежности

103-0473-00 Переходник N – BNC 063-4526-xx Компакт-диск с документацией 071-3249-00 Инструкции по монтажу и технике безопасности, печатное Руководство (на английском, японском и упрощенном китайском языках) 016-2008-xx Сумка с принадлежностями - Кабель питания - ПО OpenChoice® Desktop - Калибровочный сертификат подтверждает прослеживаемость калибровки до Национальных институтов метрологии и соответствие системе качества ISO9001

Гарантийные обязательства

Трехлетняя гарантия на все детали и работу, за исключением пробников.

Дополнительная комплектация и опции

Сервисные опции

Опция C3 Услуги по калибровке в течение 3 лет Опция C5 Услуги по калибровке в течение 5 лет Опция D1 Протокол с данными калибровки Опция D3 Протокол с данными калибровки за 3 года (с опцией C3) Опция D5 Протокол с данными калибровки за 5 лет (с опцией C5) Опция G3 Полное обслуживание в течение 3 лет (включая замену на время ремонта, плановую калибровку и многое другое) Опция G5 Полное обслуживание в течение 5 лет (включая замену на время ремонта, плановую калибровку и многое другое) Опция R5 Услуги по ремонту в течение 5 лет (включая гарантию)

Гарантийные обязательства и сервисные предложения не распространяются на пробники и принадлежности. Гарантийные обязательства и условия калибровки пробников и принадлежностей приведены в их технических описаниях.

Модули прикладных программ и принадлежностей

Модули прикладных программ Модули прикладных программ приобретаются как самостоятельные продукты вместе с осциллографом серии MDO3000 или отдельно.

Модули имеют лицензии, которые могут передаваться между прикладным модулем и осциллографом. Лицензия может храниться в модуле, что позволяет использовать модуль в другом приборе. Лицензия может находиться и в осциллографе, что позволяет удалять модуль и хранить его отдельно. Лицензия может быть возвращена в модуль, чтобы модуль можно было использовать в другом осциллографе серии MDO3000. При передаче лицензии в осциллограф и удалении модуля можно одновременно использовать более двух прикладных программ.

MDO3AERO Модуль анализа и запуска по сигналам последовательных шин для аэрокосмической промышленности. Позволяет осуществлять запуск по пакетам, передаваемым по шинам MIL-STD-1553, а также предоставляет средства анализа, такие как цифровое представление сигналов, декодирование пакетов, поиск и таблицы декодирования пакетов с метками времени.

Входы сигнала – любой канал 1 – 4, результат математической обработки, опорн. 1 – 4

MDO3AUDIO Модуль анализа и запуска по сигналам последовательных аудиошин. Позволяет осуществлять запуск по пакетам, передаваемым по аудиошинам I 2 S, LJ, RJ и TDM, а также предоставляет средства анализа, такие как цифровое представление сигналов, представление шины, декодирование пакетов, поиск и таблицы декодирования пакетов с метками времени. MDO3AUTO Модуль анализа и запуска по сигналам автомобильных последовательных шин. Позволяет осуществлять запуск по пакетам, передаваемым по шинам CAN и LIN, а также предоставляет средства анализа, такие как цифровое представление сигналов, представление шины, декодирование пакетов, поиск и таблицы декодирования пакетов с метками времени.

Входы сигнала – CAN или LIN: Любой канал 1 – 4, любой цифровой входной канал D0 – D15

MDO3COMP Модуль анализа и запуска по сигналам компьютерных последовательных шин. Позволяет осуществлять запуск по пакетам, передаваемым по шинам RS-232/422/485/UART, а также предоставляет средства анализа, такие как цифровое представление сигналов, представление шины, декодирование пакетов, поиск и таблицы декодирования пакетов с метками времени.

Входы сигнала – любой канал 1 – 4, любой цифровой входной канал D0 – D15

MDO3EMBD Модуль анализа и запуска по сигналам последовательных шин встраиваемых систем. Позволяет осуществлять запуск по пакетам, передаваемым по шинам I2C и SPI, а также предоставляет средства анализа, такие как цифровое представление сигналов, представление шины, декодирование пакетов, поиск и таблицы декодирования пакетов с метками времени.

Входы сигнала – I 2 C или SPI: Любой канал 1 – 4, любой цифровой входной канал D0 – D15

MDO3USB Модуль анализа и запуска по сигналам последовательных шин USB. Позволяет осуществлять запуск по пакетам, передаваемым по низкоскоростным и полноскоростным шинам USB. Предоставляет средства анализа, такие как цифровое представление сигналов, представление шины, декодирование пакетов, поиск и таблицы декодирования пакетов с метками времени для низкоскоростных, полноскоростных и высокоскоростных шин USB.

Входы сигнала – низкоскоростные и полноскоростные шины: любой канал 1 – 4, цифровой входной канал D0 – D15; низкоскоростной, полноскоростной и высокоскоростной: Входы сигнала – любой канал 1 – 4, результат математической обработки, опорн. 1 – 4

Примечание: Декодирование пакетов высокоскоростных шин поддерживается только в моделях с полосой пропускания 1 ГГц.

MDO3AERO Модуль анализа источников питания. Позволяет быстро и точно анализировать качество питающих напряжений, коммутационные потери, гармонические составляющие, область безопасной работы, модуляцию, пульсации, скорость нарастания тока и напряжения (dI/dt, dV/dt). MDO3LMT Модуль контроля предельных значений и тестирования по маске. Позволяет выполнять сравнение с предельными значениями, полученными на основе опорных сигналов, или выполнять тестирование по маске с использованием специальных шаблонов для сравнения с исследуемым сигналом.

Дополнительные принадлежности

Пробники

TPP0250: Пассивный пробник напряжения TekVPI®, 250 МГц, 10Х, входная емкость 3,9 пФ TPP0500B: Пассивный пробник напряжения TekVPI®, 500 МГц, 10Х, входная емкость 3,9 пФ TPP0502 Пассивный пробник напряжения TekVPI®, 500 МГц, 2Х, входная емкость 12,7 пФ TPP0850 Пассивный высоковольтный пробник TekVPI®, 2,5 кВ, 800 МГц, 50Х TPP1000 Пассивный пробник напряжения TekVPI®, 1 ГГц, 10Х, входная емкость 3,9 пФ TAP1500 Активный несимметричный пробник напряжения TekVPI®, 1,5 ГГц TAP2500 Активный несимметричный пробник напряжения TekVPI®, 2,5 ГГц TAP3500 Активный несимметричный пробник напряжения TekVPI®, 3,5 ГГц TCP0020 Пробник постоянного/переменного тока TekVPI®, 50 МГц, 20 А TCP0030A Пробник постоянного/переменного тока TekVPI®, 120 МГц, 30 А TCP0150 Пробник постоянного/переменного тока TekVPI®, 20 МГц, 150 А TDP0500 Дифференциальный пробник напряжения TekVPI®, 500 МГц, входное напряжение ±42 В TDP1000 Дифференциальный пробник напряжения TekVPI®, 1 ГГц, входное напряжение ±42 В TDP1500 Дифференциальный пробник напряжения TekVPI®, 1,5 ГГц, входное напряжение ±8,5 В TDP3500 Дифференциальный пробник напряжения TekVPI®, 3,5 ГГц, входное напряжение ±2 В THDP0200 Высоковольтный дифференциальный пробник TekVPI®, 200 МГц, ±1,5 кВ THDP0100 Высоковольтный дифференциальный пробник TekVPI®, 100 МГц, ±6 кВ TMDP0200 Высоковольтный дифференциальный пробник TekVPI®, 200 МГц, ±750 В

Принадлежности

TPA-N-PRE Предусилитель, ном. усиление 12 дБ, от 9 кГц до 6 ГГц TPA-N-VPI Адаптер N – TekVPI 119-4146-00 Комплект пробников для измерения поля в ближней зоне, от 100 кГц до 1 ГГц 119-6609-00 Гибкая несимметричная вибраторная антенна 077-0981-xx Сервисное руководство (только на английском языке) TPA-BNC Переходник с TekVPI® на TekProbe™ BNC TEK-DPG Генератор импульсов с компенсацией фазовых сдвигов TekVPI 067-1686-xx Приспособление для компенсации фазовых сдвигов и калибровки пробников SignalVu-PC-SVE Программное обеспечение векторного анализа сигналов TEK-USB-488 Переходник с GPIB на USB ACD3000 Мягкая сумка для переноски (с передней защитной крышкой) HCTEK54 Жесткий кейс для переноски (требуется ACD3000) RMD3000 Комплект для монтажа в стойку 200-5052-00 Защитная крышка передней панели

Другие РЧ пробники

101A Комплект пробников ЭМП 150A Усилитель пробника ЭМП 110A Кабель пробника 0309-0001 Переходник пробника на разъем SMA 0309-0006 Переходник пробника на разъем BNC

Опции обновления прибора

Для осциллографов серии MDO3000 предусмотрено несколько вариантов добавления функциональных возможностей после покупки. Ниже перечислены возможные обновления и метод обновления для каждого прибора.

Опции прибора после покупки Ниже перечислены продукты, которые продаются отдельно и могут быть приобретены в любое время для расширения функциональных возможностей осциллографа серии MDO3000. MDO3AFG Добавление генератора сигналов произвольной формы и стандартных функций к любому прибору серии MDO3000. MDO3MSO Добавление16 цифровых каналов; в комплекте с цифровым пробником P6316 и принадлежностями

Долговременное обновление любой модели с помощью одноразового аппаратного ключа модуля прикладных программ. С помощью аппаратного ключа выполняется разблокировка функции, после чего ключ не используется.

MDO3SA Увеличивает диапазон частот анализатора спектра до 3 ГГц и полосу захвата до 3 ГГц

Долговременное обновление любой модели с помощью одноразового аппаратного ключа модуля прикладных программ. С помощью аппаратного ключа выполняется разблокировка функции, после чего ключ не используется.

MDO3SEC Повышает уровень защиты прибора за счет использования пароля для включения и выключения всех портов прибора и обновления встроенного ПО прибора.

Одноразовое долговременное обновление любой модели с помощью ключа программного обеспечения для требуемой опции. Для использования ключей опций требуется информация о модели прибора и его серийном номере. Ключ задается на основе комбинации модели и серийного номера.

Опции для расширения полосы пропускания прибора Полоса пропускания осциллографа серии MDO3000 может быть увеличена после покупки прибора. Каждая опция обновления позволяет увеличивать аналоговую полосу пропускания и диапазон частот анализатора спектра. Опции для увеличения полосы пропускания приобретаются с учетом текущей и требуемой полос пропускания. Для активации ключей опций требуется информация о модели купленного прибора и его серийном номере. Ключ задается на основе комбинации модели и серийного номера. В процессе эксплуатации полоса пропускания может быть увеличена до 500 МГц. Для увеличения полосы пропускания прибора до 1 ГГц обратитесь в сервисный центр компании Tektronix. В следующей таблице приведены продукты, необходимые для увеличения полосы пропускания с учетом текущей и требуемой полос пропускания.
Модель Полоса пропускания перед обновлением Полоса пропускания после обновления Закажите опцию
MDO3012 100 МГц 200 МГц MDO3BW1T22
100 МГц 350 МГц MDO3BW1T32
100 МГц 500 МГц MDO3BW1T52
100 МГц 1 ГГц MDO3BW1T102
200 МГц 350 МГц MDO3BW2T32
200 МГц 500 МГц MDO3BW2T52
200 МГц 1 ГГц MDO3BW2T102
350 МГц 500 МГц MDO3BW3T52
350 МГц 1 ГГц MDO3BW3T102
500 МГц 1 ГГц MDO3BW5T102
MDO3014 100 МГц 200 МГц MDO3BW1T24
100 МГц 350 МГц MDO3BW1T34
100 МГц 500 МГц MDO3BW1T54
100 МГц 1 ГГц MDO3BW1T104
200 МГц 350 МГц MDO3BW2T34
200 МГц 500 МГц MDO3BW2T54
200 МГц 1 ГГц MDO3BW2T104
350 МГц 500 МГц MDO3BW3T54
350 МГц 1 ГГц MDO3BW3T104
500 МГц 1 ГГц MDO3BW5T104
MDO3022 200 МГц 350 МГц MDO3BW2T32
200 МГц 500 МГц MDO3BW2T52
200 МГц 1 ГГц MDO3BW2T102
350 МГц 500 МГц MDO3BW3T52
350 МГц 1 ГГц MDO3BW3T102
500 МГц 1 ГГц MDO3BW5T102
MDO3024 200 МГц 350 МГц MDO3BW2T34
200 МГц 500 МГц MDO3BW2T54
200 МГц 1 ГГц MDO3BW2T104
350 МГц 500 МГц MDO3BW3T54
350 МГц 1 ГГц MDO3BW3T104
500 МГц 1 ГГц MDO3BW5T104
MDO3032 350 МГц 500 МГц MDO3BW3T52
350 МГц 1 ГГц MDO3BW3T102
500 МГц 1 ГГц MDO3BW5T102
MDO3034 350 МГц 500 МГц MDO3BW3T54
350 МГц 1 ГГц MDO3BW3T104
500 МГц 1 ГГц MDO3BW5T104
MDO3052 500 МГц 1 ГГц MDO3BW5T102
MDO3054 500 МГц 1 ГГц MDO3BW5T104
  • Решения для тестирования систем со смешанными сигналами
    Поскольку сложность современных электронных схем растет с увеличением использования цифровой и последовательной передачи данных, определение прибора, который можно считать оптимальным для тестирования таких систем, становится неоднозначным. Инженеры разрабатывают системы со «смешанными сигналами», в которых сочетаются аналоговые и цифровые технологии. Растет необходимость в оборудовании, позволяющем сопоставлять аналоговые и цифровые сигналы с помощью одного прибора. Обычно анализ смешанных сигналов выполнялся с использованием автономного осциллографа и логического анализатора - решение состояло из двух приборов. Такое решение часто является громоздким, и с его помощью сложно добиться оптимальных результатов. Необходимость сопоставления аналоговых и цифровых сигналов привела к разработке осциллографа смешанных сигналов. Между осциллографами, осциллографами смешанных сигналов и логическими анализаторами имеются сходства и различия. Чтобы лучше понять, в каких случаях и как применяются эти приборы, полезно сравнить их функции.
  • WaveInspector™. Упрощение анализа осциллограмм
    Осциллограф уже десятилетия является необходимым инструментом в области разработки и проектирования радиоэлектронных устройств, что способствует постоянному внедрению новаторских решений в различных отраслях. Длина записи представляет собой одну из ключевых характеристик цифрового осциллографа. Длина записи - это количество выборок, которое осциллограф оцифровывает и записывает для одной регистрации. Чем длиннее запись, тем больше осциллограф регистрирует данных с высоким разрешением по времени (частотой дискретизации). Первые цифровые осциллографы могли регистрировать и хранить только 500 точек, при этом было сложно регистрировать всю информацию о событии. Проектировщики постоянно сталкивались со следующей проблемой: выполнять регистрацию в течение большего интервала, но с низким разрешением, или в течение короткого интервала, но с более высоким разрешением, хотя нужно было и то и другое – длительный интервал регистрации с высоким разрешением. Со временем технологии развивались; скорость, простота и затраты на высокую дискретизацию стали более предпочтительными. Но в то же время увеличивалась тактовая частота, увеличивалась пропускная способность и ускорялась параллельная обработка в топологиях шин, шире стали использоваться последовательные шины, сложность проектирования систем возрастала с космической скоростью. Из-за этого потребности проектировщиков в длительной регистрации с высоким разрешением росли даже быстрее, чем способность производителей увеличить длину записи. Поэтому разработки в этой области не прекращались.
  • Отладка низкоскоростных последовательных шин при проектировании встроенных систем
    Без преувеличения можно сказать, что встроенные системы в настоящее время используются везде. Встроенные системы могут содержать различные устройства, включая микропроцессоры, микроконтроллеры, ЦОС, ОЗУ, память EPROM, программируемые вентильные матрицы (FPGA), ЦАП, АЦП и схемы входа/выхода. Эти различные устройства, как правило, обмениваются данными друг с другом и с внешними устройствами по параллельным шинам. Однако в настоящее время все больше стандартных блоков, используемых во встроенных системах, заменяются блоками с последовательными шинами. Хотя последовательные шины обладают рядом преимуществ, их использование создает определенные проблемы для разработчиков встроенных систем, связанных с тем, что информация передается последовательно, а не параллельно. В данном реферате описаны общие проблемы проектирования встроенных систем и показано, как их решить с помощью функциональных возможностей новых цифровых осциллографов Tektronix серии DPO4000.
  • Какой осциллограф выбрать - с оцифровкой в реальном или эквивалентном времени?
    По методу регистрации осциллографы в основном делятся на осциллографы реального и эквивалентного времени. Для некоторых типов измерений, например для последовательности включения питания, выбор метода очевиден, в то время как, например, в случае последовательной передачи данных выбор метода затрудняется.
  • Дискретизация в цифровом осциллографе
    Мы продолжаем цикл статей об основных принципах выбора цифрового осциллографа для ваших задач. В этой статье мы уделим внимание главным характеристикам цифрового осциллографа – режиму, разрядности и частоте дискретизации, и как это влияет на результаты измерений.
  • Комбинированный осциллограф серии MDO3000 – это прибор, который может быть очень полезен при проектировании и отладке современных комплексных электронных систем. Этот осциллограф объединяет в себе 6 приборов: анализатор спектра, генератор сигналов произвольной формы и стандартных функций, логический анализатор, анализатор протоколов и цифровой вольтметр/частотомер. Осциллограф серии MDO3000 можно конфигурировать под собственные задачи и обновлять. Предусмотрена возможность добавления функций и выбора характеристик, которые необходимы в данный момент или могут понадобиться позже.
    Осциллографы серии MDO3000 имеют широкоэкранный дисплей с диагональю 9 дюймов (229 мм) и высоким разрешением (800 × 480 WVGA) для детального изучения сложных сигналов.

    Основные технические характеристики
    Осциллограф
    Модели с 2 и 4 аналоговыми каналами
    Модели с полосой пропускания 1 ГГц, 500 МГц, 350 МГц, 200 МГц и 100 МГц
    Полоса пропускания может быть расширена (до 1 ГГц)
    Частота дискретизации до 5 Гвыб./с
    Длина записи 10 млн. точек во всех каналах
    Максимальная скорость захвата сигнала >280 000 осциллограмм в секунду
    Стандартные пассивные пробники напряжения с входной емкостью 3,9 пФ и аналоговой полосой пропускания 1 ГГц, 500 МГц или 250 МГц

    Анализатор спектра
    Диапазон частот
    В стандартной конфигурации: от 9 кГц до верхней границы полосы пропускания осциллографа
    Опция: от 9 кГц до 3 ГГц
    Сверхширокая полоса захвата до 3 ГГц

    Генерация сигналов произвольной формы и стандартных функций (опционально)
    13 предварительно заданных форм сигнала
    генерация сигналов с частотой 50 МГц
    Длина записи 128 000 точек
    Частота дискретизации генератора сигналов произвольной формы 250 Mвыб./с

    Логический анализатор (опциональный)
    16 цифровых каналов
    Длина записи 10 млн. точек по всем каналам
    Разрешение по времени 121,2 пс

    Анализатор протоколов (опциональный)
    Поддерживаются стандарты последовательных шин: I2C, SPI, RS-232/422/485/UART, USB 2.0, CAN, LIN, FlexRay, MIL-STD-1553 и аудиошины

    Цифровой вольтметр (бесплатно при регистрации прибора)
    Измерения ср.кв. перем. и пост. напряжения, ср.кв. перем. напряжения с постоянной составляющей с разрешением 4 разряда
    Измерения частоты с разрешением 5 разрядов

    Возможности и преимущества
    Высокая скорость захвата сигналов в режиме FastAcq™ позволяет быстро находить трудноуловимые аномалии сигналов
    Панель управления Wave Inspector® облегчает навигацию и автоматизирует поиск данных сигнала
    33 автоматизированных измерения и гистограммы сигнала для упрощенного анализа сигнала
    Интерфейс пробников TekVPI® поддерживает активные, дифференциальные и токовые пробники с автоматическим выбором диапазона и единиц измерения
    Широкоэкранный цветной дисплей с диагональю 9 дюймов (229 мм)
    Небольшие размеры и масса – всего 147 мм в глубину и масса 4,2 кг

    Анализ спектра

    Специализированные органы управления на передней панели для самых распространённых задач
    Автоматические пиковые маркеры для определения частоты и амплитуды пиков спектра
    Ручные маркеры для измерения непиковых параметров сигнала
    Используемые типы трасс: нормальная, усреднение, удержание максимума, удержание минимума
    Режим отображения спектрограмм облегчает визуальный контроль и анализ медленно изменяющихся событий
    Автоматизированные измерения: измерение мощности сигнала в канале, коэффициента развязки соседних каналов по мощности и занимаемой полосы частот

    Генерация сигналов произвольной формы и стандартных функций
    Генерация заданных сигналов для быстрой имитации устройств при разработке систем
    Захват сигналов по аналоговым или цифровым входам, передача захваченных сигналов в память для редактирования и выдача отредактированных сигналов
    Добавление шума к любому сигналу для тестирования в неблагоприятных условиях

    Разработка и тестирование систем со смешанными сигналами

    Автоматический запуск, декодирование и поиск сигналов параллельных шин
    Многоканальный запуск по времени установки и удержания
    Режим высокоскоростного захвата MagniVu™ обеспечивает разрешение по времени 121,2 пс для цифровых каналов

    Анализ протоколов
    Запуск, декодирование и автоматический поиск содержимого пакетов наиболее распространенных стандартов последовательных шин при разработке встраиваемых систем.
    Экспорт таблиц декодирования протоколов, используемых при документировании результатов

    Цифровой вольтметр и частотомер
    Быстрая визуальная проверка измеренных значений напряжения и частоты
    Графическое представление информации о стабильности измерения

    Возможность полного обновления

    Добавление функциональных возможностей, увеличение полосы пропускания осциллографа или диапазона частот анализатора спектра в соответствии с вашими требованиями или бюджетом.

    Дополнительное программное обеспечение
    Анализ источников питания
    Контроль предельных значений и тестирование по маске

    Работа с осциллографом...

    Всё начинается с измерительного щупа !

    Провод щупа коаксиальный. Центральная жила щупа сигнальная, оплётка земля (минус или общий провод).

    На некоторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения (1:10 или 1:100), который позволяет измерять широкий диапазон напряжений. Перед проведением измерений обращайте внимание на положение тумблера на щупе, во избежании ошибок измерения.

    Щуп имеет встроенный компенсационный конденсатор. В полосе низких частот (ниже 300Гц) его влияния на усиление нет, но в полосе 3кГц - 100МГц очевидно существенное изменение усиления.

    В осциллографах имеется внутренний генератор меандра, сигнал которого выведен на переднюю панель, на клемму «калибровка». Калибровочный сигнал предусмотрен специально для подстройки компенсационной емкости. Частота этого сигнала обычно равна 1кГц, при размахе в 1В. Щуп подключается к клемме «калибровка» и подстраивается для получения наиболее правильной формы сигнала.

    Подключаем щуп к осциллографу...

    Вход осциллографа может быть закрытым или открытым . Это позволяет подключать сигнал к усилителю Y либо напрямую, либо через разделительный конденсатор. Если вход открытый, то на усилитель Y будет подана и постоянная составляющая и переменная. Если закрытый только переменная.

    Пример 1. Нам нужно посмотреть уровень пульсаций блока питания. Допустим, что напряжение блока питания 12 вольта. Величина пульсаций может быть не более 100 милливольт. На фоне 12 вольт пульсации будут совсем незаметны. В таком случае мы используем закрытый вход. Конденсатор отфильтровывает постоянное напряжение. На усилитель Y поступает только переменный сигнал. Теперь пульсации можно усилить и проанализировать!

    Для масштабирования осциллограммы на экране служат ручки Усиление и Длительность .

    Ручка Усиление масштабирует сигнал по оси Y. Она определяет цену деления одной клетки по вертикали в вольтах.

    Ручка Длительность масштабирует сигнал по оси X. Она определяет цену деления одной клетки по горизонтали в секундах.

    Пример 2. Основываясь на значениях которые указывают эти ручки и количество клеток занимаемых сигналом можно определить временные параметры сигнала в секундах и его амплитуду в вольтах. Основываясь на этих данных можно вычислить длительность импульса, паузы, периода и частоту сигнала.

    В том случае, когда осциллограмма не помещается на экране и необходимо переместить её вертикально или горизонтально используются ручки вертикального и горизонтального перемещения .

    Для удобного отображения циклично повторяющихся сигналов применяется синхронизация . Синхронизация обеспечивает прорисовку отдельных импульсов, начиная всегда с одной и той же точки экрана, благодаря чему создаётся эффект неподвижного изображения.

    Режим развёртки определяет поведение осциллографа. Предполагается три режима: автоматический (AUTO), ждущий (Normal), и однократный (Single).

    Автоматический режим позволяет получать изображения входного сигнала даже когда не происходит выполнения условий запуска. Осциллограф ожидает выполнения условий запуска в течении определённого периода времени и при отсутствии требуемого пускового сигнала производит автоматический запуск регистрации.

    Ждущий режим позволяет осциллографу регистрировать форму сигналов только при выполнении условий запуска. При отсутствии выполнения этих условий осциллограф ждёт их появления, на экране сохраняется предыдущая осциллограмма, если она была зарегистрирована.

    В режиме однократной регистрации после нажатия кнопки RUN/STOP осциллограф будет ожидать выполнения условий запуска. При их выполнении осциллограф произведёт однократную регистрацию и остановится.

    Система запуска Trigger , определяет момент начала регистрации данных и отображения формы сигнала осциллографом. Если система запуска настроена правильно на экране будут чёткие осциллограммы.

    Осциллограф поддерживает ряд видов запуска развёртки : запуск по фронту, запуск по срезу, запуск произвольным фронтом.

    Уровень запуска – это значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму.

    Работа с анализатором спектра...

    Существует общая методика исследования сигналов, которая основана на разложении сигналов в ряд Фурье при помощи алгоритма быстрого вычисления дискретного преобразования Фурье, Fast Fourier Transform (FFT ).

    Данная методика основывается на том, что всегда можно подобрать ряд сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма которых в любой момент времени равняется величине исследуемого сигнала.

    Благодаря этому стало возможным анализировать спектр сигналов в реальном времени.

    Рассмотрим принцип работы типичного FFT-анализатора .

    На его вход поступает исследуемый сигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), в которых будет вычисляться спектр, и производит FFT в каждом окне для получения амплитудного спектра.

    Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты.

    Параметр FFT Length , длинна окна – число анализируемых отсчётов сигнала – имеет решающее значение для вида спектра. Чем больше FFT Length, тем плотнее сетка частот, по которым FFT раскладывает сигнал, и тем больше деталей по частоте видно на спектре.

    Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала.

    Когда нужно проанализировать быстрые изменения в сигнале, длину окна выбирают маленькой. В этом случае разрешение анализа по времени увеличивается, а по частоте – уменьшается. Таким образом, разрешение анализа по частоте обратно пропорционально разрешению по времени.

    Один из простейших сигналов – синусоидальный. Как будет выглядеть его спектр на FFT-анализаторе? Оказывается, это зависит от его частоты. FFT раскладывает сигнал не по тем частотам, которые на самом деле присутствуют в сигнале, а по фиксированной равномерной сетке частот.

    Если частота тона совпадает с одной из частот сетки FFT, то спектр будет выглядеть "идеально": единственный острый пик укажет на частоту и амплитуду тона.

    Если же частота тона не совпадает ни с одной из частот сетки FFT, то FFT "соберёт" тон из имеющихся в сетке частот, скомбинированных с различными весами. График спектра при этом размывается по частоте. Такое размытие обычно нежелательно, так как оно может закрыть собой более слабые сигналы на соседних частотах.

    Чтобы уменьшить эффект размытия спектра, сигнал перед вычислением FFT умножается на весовые окна – гладкие функции спадающие к краям интервала.

    Они уменьшают размытие спектра за счёт некоторого ухудшения частотного разрешения.

    Простейшее окно – прямоугольное : это константа 1, не меняющая сигнала. Оно эквивалентно отсутствию весового окна.

    Одно из популярных окон – окно Хэмминга . Оно уменьшает уровень размытия спектра примерно на 40 дБ относительно главного пика.

    Весовые окна различаются по двум основным параметрам: степени расширения главного пика и степени подавления размытия спектра ("боковых лепестков"). Чем сильнее мы хотим подавить боковые лепестки, тем шире будет основной пик. Прямоугольное окно меньше всего размывает верхушку пика, но имеет самые высокие боковые лепестки.

    Окно Кайзера обладает параметром, который позволяет выбирать нужную степень подавления боковых лепестков.

    Другой популярный выбор – окно Хана . Оно подавляет максимальный боковой лепесток слабее, чем окно Хэмминга , но зато остальные боковые лепестки быстрее спадают при удалении от главного пика.

    Окно Блэкмана обладает более сильным подавлением боковых лепестков, чем окно Хана .

    Для большинства задач не очень важно, какой именно вид весового окна использовать, главное, чтобы оно было. Популярный выбор – Хан или Блэкман . Использование весового окна уменьшает зависимость формы спектра от конкретной частоты сигнала и от её совпадения с сеткой частот FFT.

    Чтобы компенсировать расширение пиков при применении весовых окон, можно использовать более длинные окна FFT: например, не 4096, а 8192 отсчета. Это улучшит разрешение анализа по частоте, но ухудшит по времени.

    Работа с генератором сигналов...

    Когда речь идёт об измерительной технике, то первое, что приходит в голову, это, как правило, осциллограф или логический анализатор (регистрирующие приборы ).

    Однако эти приборы способны выполнять измерения лишь в том случае, если на них поступает сигнал.

    Можно привести множество примеров, когда такой сигнал отсутствует, пока на исследуемое устройство не будет подан внешний сигнал.

    Пример. Нужно измерить характеристики разрабатываемой схемы и убедиться, что она соответствует требованиям.

    Поэтому набор приборов для измерения характеристик электронных схем должен включать в себя источники воздействующего сигнала и регистрирующие приборы.

    Генератор сигналов представляет собой источник воздействующего сигнала.

    В зависимости от конфигурации генератор может формировать аналоговые сигналы, цифровые последовательности, модулированные сигналы, преднамеренные искажения, шум и многое другое.

    Генератор может создавать «идеальные» сигналы или добавлять к сигналу заданные искажения или ошибки нужной величины и типа.

    Сигналы могут иметь всевозможные формы:

    • синусоидальные сигналы;
    • меандры и прямоугольные сигналы;
    • треугольные сигналы и пилообразные;
    • перепады и импульсные сигналы;
    • сложные сигналы.

    К сигналам сложной формы относятся:

    • сигналы с аналоговой, цифровой, широтно-импульсной и квадратурной модуляцией;
    • цифровые последовательности и кодированные цифровые сигналы;
    • псевдослучайные потоки битов и слов.

    Одной из разновидностей генераторов является генератор качающейся частоты. Это особый вид генератора сигналов, в котором частота выходного сигнала плавно изменяется в определенном интервале, а затем быстро возвращается к начальному значению. В это время амплитуда выходного сигнала остается постоянной.

    Если в распоряжении радиолюбителя есть осциллограф, то пользуясь им совместно с генератором качающейся частоты можно легко проверить и настроить кварцевые, электромеханические и LC-фильтры, радиочастотный и ПЧ тракты приемника или передатчика, исследовать АЧХ радио- и телеаппаратуры в широком интервале частот.

    Результаты сравнения технических характеристик и внутреннее устройство измерительного комплекса будут подробно описаны в следующем видео.

    error: